These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33044587)

  • 1. Amino modified magnetic halloysite nanotube supporting chloroperoxidase immobilization: enhanced stability, reusability, and efficient degradation of pesticide residue in wastewater.
    Zhu X; Fan X; Wang Y; Zhai Q; Hu M; Li S; Jiang Y
    Bioprocess Biosyst Eng; 2021 Mar; 44(3):483-493. PubMed ID: 33044587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of chloroperoxidase stability by covalent immobilization on chitosan membranes.
    Zhang LH; Bai CH; Wang YS; Jiang YC; Hu MC; Li SN; Zhai QG
    Biotechnol Lett; 2009 Aug; 31(8):1269-72. PubMed ID: 19404743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chitosan functionalized Halloysite Nanotubes as a receptive surface for laccase and copper to perform degradation of chlorpyrifos in aqueous environment.
    Tharmavaram M; Pandey G; Bhatt P; Prajapati P; Rawtani D; Sooraj KP; Ranjan M
    Int J Biol Macromol; 2021 Nov; 191():1046-1055. PubMed ID: 34600951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of chloroperoxidase on mesoporous materials for the oxidation of 4,6-dimethyldibenzothiophene, a recalcitrant organic sulfur compound present in petroleum fractions.
    Terrés E; Montiel M; Le Borgne S; Torres E
    Biotechnol Lett; 2008 Jan; 30(1):173-9. PubMed ID: 17876536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positional orientating co-immobilization of bienzyme CPO/GOx on mesoporous TiO
    Gao F; Hu M; Li S; Zhai Q; Jiang Y
    Bioprocess Biosyst Eng; 2019 Jun; 42(6):1065-1075. PubMed ID: 30879145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic and QM/MM investigations of Chloroperoxidase catalyzed degradation of orange G.
    Zhang R; He Q; Huang Y; Wang X
    Arch Biochem Biophys; 2016 Apr; 596():1-9. PubMed ID: 26926259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and characterization of polymer-ceramic nanocomposites containing drug loaded modified halloysite nanotubes.
    Ghaderi-Ghahfarrokhi M; Haddadi-Asl V; Zargarian SS
    J Biomed Mater Res A; 2018 May; 106(5):1276-1287. PubMed ID: 29314595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nanoparticle-decorated earth-abundant clay nanotubes as catalyst for the degradation of phenothiazine dyes and reduction of 4-(4-nitrophenyl)morpholine.
    Shanmugaraj K; Campos CH; Mangalaraja RV; Nandhini K; Aepuru R; Torres CC; Singh DP; Kumar D; Ilanchelian M; Sharma A; Vo DN
    Environ Sci Pollut Res Int; 2023 Dec; 30(60):124447-124458. PubMed ID: 35294686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of Flame Retardant Tetrabromobisphenol A by a Biocatalytic Nanofiber of Chloroperoxidase.
    García-Zamora JL; Santacruz-Vázquez V; Valera-Pérez MÁ; Moreira MT; Cardenas-Chavez DL; Tapia-Salazar M; Torres E
    Int J Environ Res Public Health; 2019 Dec; 16(24):. PubMed ID: 31817344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity and stability of chloroperoxidase in the presence of small quantities of polysaccharides: a catalytically favorable conformation was induced.
    Li C; Wang L; Jiang Y; Hu M; Li S; Zhai Q
    Appl Biochem Biotechnol; 2011 Dec; 165(7-8):1691-707. PubMed ID: 21947712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Biodegradation of Synthetic Azo Dye by Anionic Cross-Linking of Chloroperoxidase on ZnO/SiO
    Jin X; Li S; Long N; Zhang R
    Appl Biochem Biotechnol; 2018 Mar; 184(3):1009-1023. PubMed ID: 28933034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SnO
    Anwar MZ; Kim DJ; Kumar A; Patel SKS; Otari S; Mardina P; Jeong JH; Sohn JH; Kim JH; Park JT; Lee JK
    Sci Rep; 2017 Nov; 7(1):15333. PubMed ID: 29127386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resin-based dental materials containing 3-aminopropyltriethoxysilane modified halloysite-clay nanotubes for extended drug delivery.
    Karczewski A; Kalagi S; Viana ÍEL; Martins VM; Duarte S; Gregory RL; P Youngblood J; Platt JA; Feitosa S
    Dent Mater; 2021 Mar; 37(3):508-515. PubMed ID: 33500150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of Candida rugosa lipase on superparamagnetic Fe3O4 nanoparticles for biocatalysis in low-water media.
    Mukherjee J; Solanki K; Gupta MN
    Methods Mol Biol; 2013; 1051():117-27. PubMed ID: 23934801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme encapsulation in magnetic chitosan-Fe3O4 microparticles.
    Costa-Silva TA; Marques PS; Souza CR; Said S; Oliveira WP
    J Microencapsul; 2015; 32(1):16-21. PubMed ID: 25198912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promotion of activity and thermal stability of chloroperoxidase by trace amount of metal ions (M2+/M3+).
    Li H; Gao J; Wang L; Li X; Jiang Y; Hu M; Li S; Zhai Q
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2338-47. PubMed ID: 24363219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of biochemical aspects of lipase adsorbed on halloysite nanotubes and entrapped in a polyvinyl alcohol/alginate hydrogel: strategies to reuse the most stable lipase.
    Mohammadi NS; Khiabani MS; Ghanbarzadeh B; Mokarram RR
    World J Microbiol Biotechnol; 2020 Mar; 36(3):45. PubMed ID: 32130535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional nanocomposite based on halloysite nanotubes for efficient luminescent bioimaging and magnetic resonance imaging.
    Zhou T; Jia L; Luo YF; Xu J; Chen RH; Ge ZJ; Ma TL; Chen H; Zhu TF
    Int J Nanomedicine; 2016; 11():4765-4776. PubMed ID: 27698562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caldariomyces fumago DSM1256 Contains Two Chloroperoxidase Genes, Both Encoding Secreted and Active Enzymes.
    Buchhaupt M; Hüttmann S; Sachs CC; Bormann S; Hannappel A; Schrader J
    J Mol Microbiol Biotechnol; 2015; 25(4):237-43. PubMed ID: 26137931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic degradation of ginkgolic acids by laccase immobilized on core/shell Fe
    Chen HY; Ting Y; Kuo HC; Hsieh CW; Hsu HY; Wu CN; Cheng KC
    Int J Biol Macromol; 2021 Mar; 172():270-280. PubMed ID: 33418049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.