BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 33044878)

  • 21. The Mycobacterial HBHA Protein: A Promising Biomarker for Tuberculosis.
    De Maio F; Squeglia F; Goletti D; Delogu G
    Curr Med Chem; 2019; 26(11):2051-2060. PubMed ID: 30378481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The functions and applications of extracellular vesicles derived from Mycobacterium tuberculosis.
    Li Y; Qian Y; Wang N; Qiu D; Cao H; Wang Y; Luo H; Shen X; Cui H; Wang J; Zhu H
    Biomed Pharmacother; 2023 Dec; 168():115767. PubMed ID: 37865994
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi.
    Brown L; Wolf JM; Prados-Rosales R; Casadevall A
    Nat Rev Microbiol; 2015 Oct; 13(10):620-30. PubMed ID: 26324094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of new vaccines and diagnostic reagents against tuberculosis.
    Mustafa AS
    Mol Immunol; 2002 Sep; 39(1-2):113-9. PubMed ID: 12213334
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of epigenetics, bacterial and host factors in progression of Mycobacterium tuberculosis infection.
    Marimani M; Ahmad A; Duse A
    Tuberculosis (Edinb); 2018 Dec; 113():200-214. PubMed ID: 30514504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamin-like proteins mediate extracellular vesicle secretion in Mycobacterium tuberculosis.
    Gupta S; Bhagavathula M; Sharma V; Sharma N; Sharma N; Biswas A; Palacios A; Salgueiro V; Lavín JL; Dogra N; Salgame P; Prados-Rosales R; Rodríguez GM
    EMBO Rep; 2023 Jun; 24(6):e55593. PubMed ID: 37079766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prospects for a vaccine to prevent HIV-related tuberculosis.
    Nemes E; Scriba TJ; Hatherill M
    Curr Opin HIV AIDS; 2018 Nov; 13(6):522-527. PubMed ID: 30080682
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immunogenic potential of latency associated antigens against Mycobacterium tuberculosis.
    Singh S; Saraav I; Sharma S
    Vaccine; 2014 Feb; 32(6):712-6. PubMed ID: 24300592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fused Mycobacterium tuberculosis multi-stage immunogens with an Fc-delivery system as a promising approach for the development of a tuberculosis vaccine.
    Mosavat A; Soleimanpour S; Farsiani H; Sadeghian H; Ghazvini K; Sankian M; Jamehdar SA; Rezaee SA
    Infect Genet Evol; 2016 Apr; 39():163-172. PubMed ID: 26835592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epitope-driven TB vaccine development: a streamlined approach using immuno-informatics, ELISpot assays, and HLA transgenic mice.
    McMurry JA; Kimball S; Lee JH; Rivera D; Martin W; Weiner DB; Kutzler M; Sherman DR; Kornfeld H; De Groot AS
    Curr Mol Med; 2007 Jun; 7(4):351-68. PubMed ID: 17584075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel lipopeptides of ESAT-6 induce strong protective immunity against Mycobacterium tuberculosis: Routes of immunization and TLR agonists critically impact vaccine's efficacy.
    Gupta N; Vedi S; Kunimoto DY; Agrawal B; Kumar R
    Vaccine; 2016 Nov; 34(46):5677-5688. PubMed ID: 27693020
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Ryndak MB; Laal S
    Front Cell Infect Microbiol; 2019; 9():299. PubMed ID: 31497538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vaccines for TB: Lessons from the Past Translating into Future Potentials.
    Tye GJ; Lew MH; Choong YS; Lim TS; Sarmiento ME; Acosta A; Norazmi MN
    J Immunol Res; 2015; 2015():916780. PubMed ID: 26146643
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A recombinant adenovirus expressing CFP10, ESAT6, Ag85A and Ag85B of Mycobacterium tuberculosis elicits strong antigen-specific immune responses in mice.
    Li W; Deng G; Li M; Zeng J; Zhao L; Liu X; Wang Y
    Mol Immunol; 2014 Nov; 62(1):86-95. PubMed ID: 24980867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vaccine potential of Mycobacterium tuberculosis-specific genomic regions: in vitro studies in humans.
    Mustafa AS
    Expert Rev Vaccines; 2009 Oct; 8(10):1309-12. PubMed ID: 19803751
    [No Abstract]   [Full Text] [Related]  

  • 37. Towards new TB vaccines: What are the challenges?
    Dockrell HM
    Pathog Dis; 2016 Jun; 74(4):ftw016. PubMed ID: 26960944
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EVOLUTION OF MYCOBACTERIUM TUBERCULOSIS AND IMPLICATIONS FOR VACCINE DEVELOPMENT.
    Gagneux S
    Ethiop Med J; 2016 Apr; 54(2):95-100. PubMed ID: 27476231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Current efforts and future prospects in the development of live mycobacteria as vaccines.
    Ng TW; Saavedra-Ávila NA; Kennedy SC; Carreño LJ; Porcelli SA
    Expert Rev Vaccines; 2015; 14(11):1493-507. PubMed ID: 26366616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of M. tuberculosis Immune Evasion as Challenges to TB Vaccine Design.
    Ernst JD
    Cell Host Microbe; 2018 Jul; 24(1):34-42. PubMed ID: 30001523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.