These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33044941)

  • 1. Human-Inspired Haptic Perception and Control in Robot-Assisted Milling Surgery.
    Dai Y; Xue Y; Zhang J
    IEEE Trans Haptics; 2021; 14(2):359-370. PubMed ID: 33044941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intelligent Control for Human-Robot Cooperation in Orthopedics Surgery.
    Kuang S; Tang Y; Lin A; Yu S; Sun L
    Adv Exp Med Biol; 2018; 1093():245-262. PubMed ID: 30306486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fuzzy neural network sliding mode controller for vibration suppression in robotically assisted minimally invasive surgery.
    Sang H; Yang C; Liu F; Yun J; Jin G
    Int J Med Robot; 2016 Dec; 12(4):670-679. PubMed ID: 27921372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robotized handheld smart tool for orthopedic surgery.
    Hung SS; Hsu AS; Ho TH; Chi CH; Yen PL
    Int J Med Robot; 2021 Oct; 17(5):e2289. PubMed ID: 34036711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor Bur Milling State Identification via Fast Fourier Transform Analyzing Sound Signal in Cervical Spine Posterior Decompression Surgery.
    Bai H; Wang R; Wang Q; Xia GM; Xue Y; Dai Y; Zhang JX
    Orthop Surg; 2021 Dec; 13(8):2382-2395. PubMed ID: 34792301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilevel Fuzzy Control Based on Force Information in Robot-Assisted Decompressive Laminectomy.
    Qi X; Sun Y; Ma X; Hu Y; Zhang J; Tian W
    Adv Exp Med Biol; 2018; 1093():263-279. PubMed ID: 30306487
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Chow AK; Wong R; Monda S; Bhatt R; Sands KG; Vetter J; Badhiwala N; DeClue A; Kim EH; Sivaraman A; Venkatesh R; Figenshau RS; Du K
    J Endourol; 2021 Jun; 35(6):878-884. PubMed ID: 33261512
    [No Abstract]   [Full Text] [Related]  

  • 9. A semi-active milling procedure in view of preparing implantation beds in robot-assisted orthopaedic surgery.
    Van Ham G; Denis K; Vander Sloten J; Van Audekercke R; Van der Perre G; De Schutter J; Simon JP; Fabry G
    Proc Inst Mech Eng H; 2005 May; 219(3):163-74. PubMed ID: 15934392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of milling status based on vibration signals using artificial intelligence in robot-assisted cervical laminectomy.
    Wang R; Bai H; Xia G; Zhou J; Dai Y; Xue Y
    Eur J Med Res; 2023 Jun; 28(1):203. PubMed ID: 37381061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a robot-assisted system for transforaminal percutaneous endoscopic lumbar surgeries: study protocol.
    Fan N; Yuan S; Du P; Zhu W; Li L; Hai Y; Ding H; Wang G; Zang L
    J Orthop Surg Res; 2020 Oct; 15(1):479. PubMed ID: 33076965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Haptic tracking control for minimally invasive robotic surgery].
    Xu Z; Song C; Wu W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Jun; 29(3):407-10. PubMed ID: 22826928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Laser-based quality assurance for robot-assisted milling at the base of the skull].
    Maassen MM; Malthan D; Stallkamp J; Schäfer A; Dammann F; Schwaderer E; Zenner HP
    HNO; 2006 Feb; 54(2):105-11. PubMed ID: 15977039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research of the master-slave robot surgical system with the function of force feedback.
    Shi Y; Zhou C; Xie L; Chen Y; Jiang J; Zhang Z; Deng Z
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28513095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on spatial motion safety constraints and cooperative control of robot-assisted craniotomy: Beagle model experiment verification.
    Xu C; Lin L; Mar Aung Z; Chai G; Xie L
    Int J Med Robot; 2021 Apr; 17(2):e2231. PubMed ID: 33470010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation.
    Meli L; Pacchierotti C; Prattichizzo D
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28218455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-Inspired Haptic Feedback for Artificial Palpation in Robotic Surgery.
    Ouyang Q; Wu J; Sun S; Pensa J; Abiri A; Dutson E; Bisley J
    IEEE Trans Biomed Eng; 2021 Oct; 68(10):3184-3193. PubMed ID: 33905321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fuzzy-based shared controller for brain-actuated simulated robotic system.
    Liu R; Xue KZ; Wang YX; Yang L
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7384-7. PubMed ID: 22256045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.