These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33044941)

  • 21. Cardiac X-ray image-based haptic guidance for robot-assisted coronary intervention: a feasibility study.
    Tahir A; Iqbal H; Usman M; Ghaffar A; Hafeez A
    Int J Comput Assist Radiol Surg; 2022 Mar; 17(3):531-539. PubMed ID: 35041132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Usability of cooperative surgical telemanipulation for bone milling tasks.
    Schleer P; Vossel M; Heckmann L; Drobinsky S; Theisgen L; de la Fuente M; Radermacher K
    Int J Comput Assist Radiol Surg; 2021 Feb; 16(2):311-322. PubMed ID: 33355895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An image-guided hybrid robot system for dental implant surgery.
    Feng Y; Fan J; Tao B; Wang S; Mo J; Wu Y; Liang Q; Chen X
    Int J Comput Assist Radiol Surg; 2022 Jan; 17(1):15-26. PubMed ID: 34449036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The concept of spatial motion restriction zones in a robot-assisted surgical system.
    Prokhorenko L; Klimov D; Vorotnikov A; Mishchenkov D; Poduraev Y
    J Robot Surg; 2022 Apr; 16(2):445-452. PubMed ID: 34101124
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robot-Assisted Nephrectomy Using the Newly Developed
    Liu C; Lai C; Yao X; Li K; Wang J; Huang J; Xu K
    J Endourol; 2020 Nov; 34(11):1149-1154. PubMed ID: 32911971
    [No Abstract]   [Full Text] [Related]  

  • 26. Open core control software for surgical robots.
    Arata J; Kozuka H; Kim HW; Takesue N; Vladimirov B; Sakaguchi M; Tokuda J; Hata N; Chinzei K; Fujimoto H
    Int J Comput Assist Radiol Surg; 2010 May; 5(3):211-20. PubMed ID: 20033506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of the first force-controlled robot for otoneurosurgery.
    Federspil PA; Geisthoff UW; Henrich D; Plinkert PK
    Laryngoscope; 2003 Mar; 113(3):465-71. PubMed ID: 12616198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development and validation of a two-segment continuum robot for maxillary sinus surgery.
    Hong W; Zhou Y; Cao Y; Feng F; Liu Z; Li K; Xie L
    Int J Med Robot; 2022 Feb; 18(1):e2340. PubMed ID: 34634839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A development of assistant surgical robot system based on surgical-operation-by-wire and hands-on-throttle-and-stick.
    Kim M; Lee C; Park WJ; Suh YS; Yang HK; Kim HJ; Kim S
    Biomed Eng Online; 2016 May; 15(1):58. PubMed ID: 27206350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 30 Years of Robotic Surgery.
    Leal Ghezzi T; Campos Corleta O
    World J Surg; 2016 Oct; 40(10):2550-7. PubMed ID: 27177648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Virtual wall-based haptic-guided teleoperated surgical robotic system for single-port brain tumor removal surgery.
    Seung S; Choi H; Jang J; Kim YS; Park JO; Park S; Ko SY
    Proc Inst Mech Eng H; 2017 Jan; 231(1):3-19. PubMed ID: 27856790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PARAMIS parallel robot for laparoscopic surgery.
    Pisla D; Plitea N; Vaida C; Hesselbach J; Raatz A; Vlad L; Graur F; Gyurka B; Gherman B; Suciu M
    Chirurgia (Bucur); 2010; 105(5):677-83. PubMed ID: 21141094
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Supervised and dynamic neuro-fuzzy systems to classify physiological responses in robot-assisted neurorehabilitation.
    Lledó LD; Badesa FJ; Almonacid M; Cano-Izquierdo JM; Sabater-Navarro JM; Fernández E; Garcia-Aracil N
    PLoS One; 2015; 10(5):e0127777. PubMed ID: 26001214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intelligent temperature modeling in robotic cortical bone milling process based on teaching-learning-based optimization algorithm.
    Tahmasbi V; Hossein Rabiee A
    Proc Inst Mech Eng H; 2022 Aug; 236(8):1118-1128. PubMed ID: 35765697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MINARO HD: control and evaluation of a handheld, highly dynamic surgical robot.
    Vossel M; Müller M; Niesche A; Theisgen L; Radermacher K; de la Fuente M
    Int J Comput Assist Radiol Surg; 2021 Mar; 16(3):467-474. PubMed ID: 33484430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An experimental evaluation of the force requirements for robotic mastoidectomy.
    Dillon NP; Kratchman LB; Dietrich MS; Labadie RF; Webster RJ; Withrow TJ
    Otol Neurotol; 2013 Sep; 34(7):e93-102. PubMed ID: 23787968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.
    Li TH; Su YT; Lai SW; Hu JJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Force-based control of a compact spinal milling robot.
    Wang T; Luan S; Hu L; Liu Z; Li W; Jiang L
    Int J Med Robot; 2010 Jun; 6(2):178-85. PubMed ID: 20336637
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Research on fuzzy proportional-integral-derivative control of master-slave minimally invasive operation robot driver].
    Zhao X; Ren C; Liu H; Li H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Dec; 31(6):1346-9. PubMed ID: 25868257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.