These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33045012)

  • 1. Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria.
    Galbusera L; Bellement-Theroue G; Urchueguia A; Julou T; van Nimwegen E
    PLoS One; 2020; 15(10):e0240233. PubMed ID: 33045012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FlowCal: A User-Friendly, Open Source Software Tool for Automatically Converting Flow Cytometry Data from Arbitrary to Calibrated Units.
    Castillo-Hair SM; Sexton JT; Landry BP; Olson EJ; Igoshin OA; Tabor JJ
    ACS Synth Biol; 2016 Jul; 5(7):774-80. PubMed ID: 27110723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FlopR: An Open Source Software Package for Calibration and Normalization of Plate Reader and Flow Cytometry Data.
    Fedorec AJH; Robinson CM; Wen KY; Barnes CP
    ACS Synth Biol; 2020 Sep; 9(9):2258-2266. PubMed ID: 32854500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput bacterial co-encapsulation in microfluidic gel beads for discovery of antibiotic-producing strains.
    Ochoa A; Gastélum G; Rocha J; Olguin LF
    Analyst; 2023 Nov; 148(22):5762-5774. PubMed ID: 37843562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating RNA numbers in single cells by RNA fluorescent tagging and flow cytometry.
    Bahrudeen MNM; Chauhan V; Palma CSD; Oliveira SMD; Kandavalli VK; Ribeiro AS
    J Microbiol Methods; 2019 Nov; 166():105745. PubMed ID: 31654657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time on-line flow cytometry for bioprocess monitoring.
    Broger T; Odermatt RP; Huber P; Sonnleitner B
    J Biotechnol; 2011 Jul; 154(4):240-7. PubMed ID: 21609740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique Calibrators Derived from Fluorescence-Activated Nanoparticle Sorting for Flow Cytometric Size Estimation of Artificial Vesicles: Possibilities and Limitations.
    Simonsen JB; Larsen JB; Hempel C; Eng N; Fossum A; Andresen TL
    Cytometry A; 2019 Aug; 95(8):917-924. PubMed ID: 31120635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing transformations for automated, high throughput analysis of flow cytometry data.
    Finak G; Perez JM; Weng A; Gottardo R
    BMC Bioinformatics; 2010 Nov; 11():546. PubMed ID: 21050468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and use of flow cytometry optimized plasmid-sensor strains.
    Bahl MI; Oregaard G; Sørensen SJ; Hansen LH
    Methods Mol Biol; 2009; 532():257-68. PubMed ID: 19271190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limitations of flow cytometry for the specific detection of bacteria in mixed populations.
    Phillips AP; Martin KL
    J Immunol Methods; 1988 Jan; 106(1):109-17. PubMed ID: 2448382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence as an alternative to light-scatter gating strategies to identify frozen-thawed cells with flow cytometry.
    Reardon AJ; Elliott JA; McGann LE
    Cryobiology; 2014 Aug; 69(1):91-9. PubMed ID: 24880088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell division in Escherichia coli cultures monitored at single cell resolution.
    Roostalu J; Jõers A; Luidalepp H; Kaldalu N; Tenson T
    BMC Microbiol; 2008 Apr; 8():68. PubMed ID: 18430255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shifts in the fluorescence lifetime of EGFP during bacterial phagocytosis measured by phase-sensitive flow cytometry.
    Li W; Houston KD; Houston JP
    Sci Rep; 2017 Jan; 7():40341. PubMed ID: 28091553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lack of cations in flow cytometry buffers affect fluorescence signals by reducing membrane stability and viability of Escherichia coli strains.
    Tomasek K; Bergmiller T; Guet CC
    J Biotechnol; 2018 Feb; 268():40-52. PubMed ID: 29355812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual fluorescence system for flow cytometric analysis of Escherichia coli transcriptional response in multi-species context.
    Miao H; Ratnasingam S; Pu CS; Desai MM; Sze CC
    J Microbiol Methods; 2009 Feb; 76(2):109-19. PubMed ID: 18926860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow cytometry and bacterial pathogenesis.
    Valdivia RH; Falkow S
    Curr Opin Microbiol; 1998 Jun; 1(3):359-63. PubMed ID: 10066495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring promoter activity in a single bacterial cell by using green and red fluorescent proteins.
    Hakkila K; Maksimow M; Rosengren A; Karp M; Virta M
    J Microbiol Methods; 2003 Jul; 54(1):75-9. PubMed ID: 12732423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow cytometric analysis of E. coli on agar plates: implications for recombinant protein production.
    Wyre C; Overton TW
    Biotechnol Lett; 2014 Jul; 36(7):1485-94. PubMed ID: 24652548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single cell analysis using surface enhanced Raman scattering (SERS) tags.
    Nolan JP; Duggan E; Liu E; Condello D; Dave I; Stoner SA
    Methods; 2012 Jul; 57(3):272-9. PubMed ID: 22498143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple correction for cell autofluorescence for multiparameter cell-based analysis of human solid tumors.
    Smith CA; Pollice A; Emlet D; Shackney SE
    Cytometry B Clin Cytom; 2006 Mar; 70(2):91-103. PubMed ID: 16456868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.