These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33045012)

  • 21. Single cell analysis using surface enhanced Raman scattering (SERS) tags.
    Nolan JP; Duggan E; Liu E; Condello D; Dave I; Stoner SA
    Methods; 2012 Jul; 57(3):272-9. PubMed ID: 22498143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A simple correction for cell autofluorescence for multiparameter cell-based analysis of human solid tumors.
    Smith CA; Pollice A; Emlet D; Shackney SE
    Cytometry B Clin Cytom; 2006 Mar; 70(2):91-103. PubMed ID: 16456868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated analysis of bacterial flow cytometry data with FlowGateNIST.
    Ross D
    PLoS One; 2021; 16(8):e0250753. PubMed ID: 34407072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bayesian inference on stochastic gene transcription from flow cytometry data.
    Tiberi S; Walsh M; Cavallaro M; Hebenstreit D; Finkenstädt B
    Bioinformatics; 2018 Sep; 34(17):i647-i655. PubMed ID: 30423089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-throughput single-cell fluorescence spectroscopy.
    Isailovic D; Li HW; Phillips GJ; Yeung ES
    Appl Spectrosc; 2005 Feb; 59(2):221-6. PubMed ID: 15720763
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analyzing cellular internalization of nanoparticles and bacteria by multi-spectral imaging flow cytometry.
    Phanse Y; Ramer-Tait AE; Friend SL; Carrillo-Conde B; Lueth P; Oster CJ; Phillips GJ; Narasimhan B; Wannemuehler MJ; Bellaire BH
    J Vis Exp; 2012 Jun; (64):e3884. PubMed ID: 22710268
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gemini, a bifunctional enzymatic and fluorescent reporter of gene expression.
    Martin L; Che A; Endy D
    PLoS One; 2009 Nov; 4(11):e7569. PubMed ID: 19888458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long wavelength fluorophores and cell-by-cell correction for autofluorescence significantly improves the accuracy of flow cytometric energy transfer measurements on a dual-laser benchtop flow cytometer.
    Sebestyén Z; Nagy P; Horváth G; Vámosi G; Debets R; Gratama JW; Alexander DR; Szöllosi J
    Cytometry; 2002 Jul; 48(3):124-35. PubMed ID: 12116358
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of GFP expression and viability using the tali image-based cytometer.
    Remple K; Stone L
    J Vis Exp; 2011 Nov; (57):. PubMed ID: 22127256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation of highly pure and viable primordial germ cells from rainbow trout by GFP-dependent flow cytometry.
    Kobayashi T; Yoshizaki G; Takeuchi Y; Takeuchi T
    Mol Reprod Dev; 2004 Jan; 67(1):91-100. PubMed ID: 14648879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graphical analysis of flow cytometer data for characterizing controlled fluorescent protein display on λ phage.
    Sokolenko S; Nicastro J; Slavcev R; Aucoin MG
    Cytometry A; 2012 Dec; 81(12):1031-9. PubMed ID: 23027705
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection and quantification of bacterial autofluorescence at the single-cell level by a laboratory-built high-sensitivity flow cytometer.
    Yang L; Zhou Y; Zhu S; Huang T; Wu L; Yan X
    Anal Chem; 2012 Feb; 84(3):1526-32. PubMed ID: 22243282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-throughput detection and quantification of mitochondrial fusion through imaging flow cytometry.
    Nascimento A; Lannigan J; Kashatus D
    Cytometry A; 2016 Aug; 89(8):708-19. PubMed ID: 27387508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time-domain microfluidic fluorescence lifetime flow cytometry for high-throughput Förster resonance energy transfer screening.
    Nedbal J; Visitkul V; Ortiz-Zapater E; Weitsman G; Chana P; Matthews DR; Ng T; Ameer-Beg SM
    Cytometry A; 2015 Feb; 87(2):104-18. PubMed ID: 25523156
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrafast clustering of single-cell flow cytometry data using FlowGrid.
    Ye X; Ho JWK
    BMC Syst Biol; 2019 Apr; 13(Suppl 2):35. PubMed ID: 30953498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering an Acinetobacter regulon for biosensing and high-throughput enzyme screening in E. coli via flow cytometry.
    Jha RK; Kern TL; Fox DT; M Strauss CE
    Nucleic Acids Res; 2014 Jul; 42(12):8150-60. PubMed ID: 24861620
    [TBL] [Abstract][Full Text] [Related]  

  • 37. H-EM: An algorithm for simultaneous cell diameter and intensity quantification in low-resolution imaging cytometry.
    Pardo E; González G; Tucker-Schwartz JM; Dave SR; Malpica N
    PLoS One; 2019; 14(9):e0222265. PubMed ID: 31513616
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visible and near infrared fluorescence spectral flow cytometry.
    Nolan JP; Condello D; Duggan E; Naivar M; Novo D
    Cytometry A; 2013 Mar; 83(3):253-64. PubMed ID: 23225549
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An improved method for differentiating cell-bound from internalized particles by imaging flow cytometry.
    Smirnov A; Solga MD; Lannigan J; Criss AK
    J Immunol Methods; 2015 Aug; 423():60-9. PubMed ID: 25967947
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative measurement of multifunctional quantum dot binding to cellular targets using flow cytometry.
    Smith RA; Giorgio TD
    Cytometry A; 2009 May; 75(5):465-74. PubMed ID: 19034921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.