These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33045012)

  • 61. Fast and simple tool for the quantification of biofilm-embedded cells sub-populations from fluorescent microscopic images.
    Bogachev MI; Volkov VY; Markelov OA; Trizna EY; Baydamshina DR; Melnikov V; Murtazina RR; Zelenikhin PV; Sharafutdinov IS; Kayumov AR
    PLoS One; 2018; 13(5):e0193267. PubMed ID: 29715298
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Quantitative analysis and isolation of Escherichia coli O157:H7 in a food matrix using flow cytometry and cell sorting.
    Tortorello ML; Stewart DS; Raybourne RB
    FEMS Immunol Med Microbiol; 1997 Dec; 19(4):267-74. PubMed ID: 9537751
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Flow cytometric analysis to detect pathogens in bacterial cell mixtures using semiconductor quantum dots.
    Hahn MA; Keng PC; Krauss TD
    Anal Chem; 2008 Feb; 80(3):864-72. PubMed ID: 18186615
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Evaluation of Escherichia coli viability by flow cytometry: A method for determining bacterial responses to antibiotic exposure.
    Boi P; Manti A; Pianetti A; Sabatini L; Sisti D; Rocchi MB; Bruscolini F; Galluzzi L; Papa S
    Cytometry B Clin Cytom; 2015; 88(3):149-53. PubMed ID: 25532721
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Characteristics and dynamics of bacterial populations during postantibiotic effect determined by flow cytometry.
    Gottfredsson M; Erlendsdóttir H; Sigfússon A; Gudmundsson S
    Antimicrob Agents Chemother; 1998 May; 42(5):1005-11. PubMed ID: 9593117
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Systematic characterization of maturation time of fluorescent proteins in living cells.
    Balleza E; Kim JM; Cluzel P
    Nat Methods; 2018 Jan; 15(1):47-51. PubMed ID: 29320486
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Discriminating Bacterial Phenotypes at the Population and Single-Cell Level: A Comparison of Flow Cytometry and Raman Spectroscopy Fingerprinting.
    García-Timermans C; Rubbens P; Heyse J; Kerckhof FM; Props R; Skirtach AG; Waegeman W; Boon N
    Cytometry A; 2020 Jul; 97(7):713-726. PubMed ID: 31889414
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Direct and highly sensitive measurement of fluorescent molecules in bulk solutions using flow cytometry.
    Wurm M; Ilhan S; Jandt U; Zeng AP
    Anal Biochem; 2019 Apr; 570():32-42. PubMed ID: 30710511
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Resolution of dimly fluorescent particles: a practical measure of fluorescence sensitivity.
    Chase ES; Hoffman RA
    Cytometry; 1998 Oct; 33(2):267-79. PubMed ID: 9773890
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Flow cytometry and phytoplankton.
    Phinney DA; Cucci TL
    Cytometry; 1989 Sep; 10(5):511-21. PubMed ID: 2776567
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A microfabricated fluorescence-activated cell sorter.
    Fu AY; Spence C; Scherer A; Arnold FH; Quake SR
    Nat Biotechnol; 1999 Nov; 17(11):1109-11. PubMed ID: 10545919
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 73. An efficient and simple method to increase the level of displayed protein on the yeast cell surface.
    Zhao JZ; Xu LM; Liu M; Cao YS; LaPatra SE; Yin JS; Liu HB; Lu TY
    J Microbiol Methods; 2017 Apr; 135():41-47. PubMed ID: 28188810
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Rapid, absolute, and simultaneous quantification of specific pathogenic strain and total bacterial cells using an ultrasensitive dual-color flow cytometer.
    Yang L; Wu L; Zhu S; Long Y; Hang W; Yan X
    Anal Chem; 2010 Feb; 82(3):1109-16. PubMed ID: 20039721
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Quantitative monitoring of the Chlamydia trachomatis developmental cycle using GFP-expressing bacteria, microscopy and flow cytometry.
    Vromman F; Laverrière M; Perrinet S; Dufour A; Subtil A
    PLoS One; 2014; 9(6):e99197. PubMed ID: 24911516
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Reduced Fluorescence versus Forward Scatter Time-of-Flight and Increased Peak versus Integral Fluorescence Ratios Indicate Receptor Clustering in Flow Cytometry.
    Fürnrohr BG; Stein M; Rhodes B; Chana PS; Schett G; Vyse TJ; Herrmann M; Mielenz D
    J Immunol; 2015 Jul; 195(1):377-85. PubMed ID: 26026066
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Analysis of cellular autofluorescence in touch samples by flow cytometry: implications for front end separation of trace mixture evidence.
    Katherine Philpott M; Stanciu CE; Kwon YJ; Bustamante EE; Greenspoon SA; Ehrhardt CJ
    Anal Bioanal Chem; 2017 Jul; 409(17):4167-4179. PubMed ID: 28516277
    [TBL] [Abstract][Full Text] [Related]  

  • 78. High-precision characterization of individual E. coli cell morphology by scanning flow cytometry.
    Konokhova AI; Gelash AA; Yurkin MA; Chernyshev AV; Maltsev VP
    Cytometry A; 2013 Jun; 83(6):568-75. PubMed ID: 23568828
    [TBL] [Abstract][Full Text] [Related]  

  • 79. High-throughput screening of microchip-synthesized genes in programmable double-emulsion droplets.
    Chan HF; Ma S; Tian J; Leong KW
    Nanoscale; 2017 Mar; 9(10):3485-3495. PubMed ID: 28239692
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Method to improve the sensitivity of flow cytometric membrane potential measurements in mouse spinal cord cells.
    Seamer LC; Mandler RN
    Cytometry; 1992; 13(5):545-52. PubMed ID: 1633734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.