BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 33045323)

  • 1. Deep-learning approach with convolutional neural network for classification of maximum intensity projections of dynamic contrast-enhanced breast magnetic resonance imaging.
    Fujioka T; Yashima Y; Oyama J; Mori M; Kubota K; Katsuta L; Kimura K; Yamaga E; Oda G; Nakagawa T; Kitazume Y; Tateishi U
    Magn Reson Imaging; 2021 Jan; 75():1-8. PubMed ID: 33045323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of Breast Masses on Ultrasound Shear Wave Elastography using Convolutional Neural Networks.
    Fujioka T; Katsuta L; Kubota K; Mori M; Kikuchi Y; Kato A; Oda G; Nakagawa T; Kitazume Y; Tateishi U
    Ultrason Imaging; 2020; 42(4-5):213-220. PubMed ID: 32501152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network.
    Fujioka T; Kubota K; Mori M; Kikuchi Y; Katsuta L; Kasahara M; Oda G; Ishiba T; Nakagawa T; Tateishi U
    Jpn J Radiol; 2019 Jun; 37(6):466-472. PubMed ID: 30888570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and Diagnosis of Breast Cancer Using Artificial Intelligence Based assessment of Maximum Intensity Projection Dynamic Contrast-Enhanced Magnetic Resonance Images.
    Adachi M; Fujioka T; Mori M; Kubota K; Kikuchi Y; Xiaotong W; Oyama J; Kimura K; Oda G; Nakagawa T; Uetake H; Tateishi U
    Diagnostics (Basel); 2020 May; 10(5):. PubMed ID: 32443922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Deep Convolutional Neural Network With Performance Comparable to Radiologists for Differentiating Between Spinal Schwannoma and Meningioma.
    Maki S; Furuya T; Horikoshi T; Yokota H; Mori Y; Ota J; Kawasaki Y; Miyamoto T; Norimoto M; Okimatsu S; Shiga Y; Inage K; Orita S; Takahashi H; Suyari H; Uno T; Ohtori S
    Spine (Phila Pa 1976); 2020 May; 45(10):694-700. PubMed ID: 31809468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning method with a convolutional neural network for image classification of normal and metastatic axillary lymph nodes on breast ultrasonography.
    Ozaki J; Fujioka T; Yamaga E; Hayashi A; Kujiraoka Y; Imokawa T; Takahashi K; Okawa S; Yashima Y; Mori M; Kubota K; Oda G; Nakagawa T; Tateishi U
    Jpn J Radiol; 2022 Aug; 40(8):814-822. PubMed ID: 35284996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning for Differentiation of Breast Masses Detected by Screening Ultrasound Elastography.
    Fukuda T; Tsunoda H; Yagishita K; Naganawa S; Hayashi K; Kurihara Y
    Ultrasound Med Biol; 2023 Apr; 49(4):989-995. PubMed ID: 36681608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomic versus Convolutional Neural Networks Analysis for Classification of Contrast-enhancing Lesions at Multiparametric Breast MRI.
    Truhn D; Schrading S; Haarburger C; Schneider H; Merhof D; Kuhl C
    Radiology; 2019 Feb; 290(2):290-297. PubMed ID: 30422086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images.
    Zhou J; Luo LY; Dou Q; Chen H; Chen C; Li GJ; Jiang ZF; Heng PA
    J Magn Reson Imaging; 2019 Oct; 50(4):1144-1151. PubMed ID: 30924997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convolutional neural network for discriminating nasopharyngeal carcinoma and benign hyperplasia on MRI.
    Wong LM; King AD; Ai QYH; Lam WKJ; Poon DMC; Ma BBY; Chan KCA; Mo FKF
    Eur Radiol; 2021 Jun; 31(6):3856-3863. PubMed ID: 33241522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breast Cancer Classification in Automated Breast Ultrasound Using Multiview Convolutional Neural Network with Transfer Learning.
    Wang Y; Choi EJ; Choi Y; Zhang H; Jin GY; Ko SB
    Ultrasound Med Biol; 2020 May; 46(5):1119-1132. PubMed ID: 32059918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attention-based deep learning for breast lesions classification on contrast enhanced spectral mammography: a multicentre study.
    Mao N; Zhang H; Dai Y; Li Q; Lin F; Gao J; Zheng T; Zhao F; Xie H; Xu C; Ma H
    Br J Cancer; 2023 Mar; 128(5):793-804. PubMed ID: 36522478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Classification of Benign and Malignant Breast Lesions Using Deep Feature Maximum Intensity Projection MRI in Breast Cancer Diagnosis Using Dynamic Contrast-enhanced MRI.
    Hu Q; Whitney HM; Li H; Ji Y; Liu P; Giger ML
    Radiol Artif Intell; 2021 May; 3(3):e200159. PubMed ID: 34235439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists.
    Haenssle HA; Fink C; Schneiderbauer R; Toberer F; Buhl T; Blum A; Kalloo A; Hassen ABH; Thomas L; Enk A; Uhlmann L; ; Alt C; Arenbergerova M; Bakos R; Baltzer A; Bertlich I; Blum A; Bokor-Billmann T; Bowling J; Braghiroli N; Braun R; Buder-Bakhaya K; Buhl T; Cabo H; Cabrijan L; Cevic N; Classen A; Deltgen D; Fink C; Georgieva I; Hakim-Meibodi LE; Hanner S; Hartmann F; Hartmann J; Haus G; Hoxha E; Karls R; Koga H; Kreusch J; Lallas A; Majenka P; Marghoob A; Massone C; Mekokishvili L; Mestel D; Meyer V; Neuberger A; Nielsen K; Oliviero M; Pampena R; Paoli J; Pawlik E; Rao B; Rendon A; Russo T; Sadek A; Samhaber K; Schneiderbauer R; Schweizer A; Toberer F; Trennheuser L; Vlahova L; Wald A; Winkler J; Wölbing P; Zalaudek I
    Ann Oncol; 2018 Aug; 29(8):1836-1842. PubMed ID: 29846502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison between deep learning convolutional neural networks and radiologists in the differentiation of benign and malignant thyroid nodules on CT images.
    Zhao HB; Liu C; Ye J; Chang LF; Xu Q; Shi BW; Liu LL; Yin YL; Shi BB
    Endokrynol Pol; 2021; 72(3):217-225. PubMed ID: 33619712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of deep learning for differentiating pancreatic diseases on contrast-enhanced magnetic resonance imaging: A preliminary study.
    Gao X; Wang X
    Diagn Interv Imaging; 2020 Feb; 101(2):91-100. PubMed ID: 31375430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network.
    Aldoj N; Lukas S; Dewey M; Penzkofer T
    Eur Radiol; 2020 Feb; 30(2):1243-1253. PubMed ID: 31468158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning Algorithms with Demographic Information Help to Detect Tuberculosis in Chest Radiographs in Annual Workers' Health Examination Data.
    Heo SJ; Kim Y; Yun S; Lim SS; Kim J; Nam CM; Park EC; Jung I; Yoon JH
    Int J Environ Res Public Health; 2019 Jan; 16(2):. PubMed ID: 30654560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI.
    Hamm CA; Wang CJ; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Duncan JS; Weinreb JC; Chapiro J; Letzen B
    Eur Radiol; 2019 Jul; 29(7):3338-3347. PubMed ID: 31016442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrimination of benign and malignant breast lesions on dynamic contrast-enhanced magnetic resonance imaging using deep learning.
    Zhang M; He G; Pan C; Yun B; Shen D; Meng M
    J Cancer Res Ther; 2023 Dec; 19(6):1589-1596. PubMed ID: 38156926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.