These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 33045649)
1. Attribute-guided image generation of three-dimensional computed tomography images of lung nodules using a generative adversarial network. Nishio M; Muramatsu C; Noguchi S; Nakai H; Fujimoto K; Sakamoto R; Fujita H Comput Biol Med; 2020 Nov; 126():104032. PubMed ID: 33045649 [TBL] [Abstract][Full Text] [Related]
2. Automated Pulmonary Nodule Classification in Computed Tomography Images Using a Deep Convolutional Neural Network Trained by Generative Adversarial Networks. Onishi Y; Teramoto A; Tsujimoto M; Tsukamoto T; Saito K; Toyama H; Imaizumi K; Fujita H Biomed Res Int; 2019; 2019():6051939. PubMed ID: 30719445 [TBL] [Abstract][Full Text] [Related]
3. Multiplanar analysis for pulmonary nodule classification in CT images using deep convolutional neural network and generative adversarial networks. Onishi Y; Teramoto A; Tsujimoto M; Tsukamoto T; Saito K; Toyama H; Imaizumi K; Fujita H Int J Comput Assist Radiol Surg; 2020 Jan; 15(1):173-178. PubMed ID: 31732864 [TBL] [Abstract][Full Text] [Related]
4. A manifold learning regularization approach to enhance 3D CT image-based lung nodule classification. Ren Y; Tsai MY; Chen L; Wang J; Li S; Liu Y; Jia X; Shen C Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):287-295. PubMed ID: 31768885 [TBL] [Abstract][Full Text] [Related]
5. Investigation of pulmonary nodule classification using multi-scale residual network enhanced with 3DGAN-synthesized volumes. Onishi Y; Teramoto A; Tsujimoto M; Tsukamoto T; Saito K; Toyama H; Imaizumi K; Fujita H Radiol Phys Technol; 2020 Jun; 13(2):160-169. PubMed ID: 32358643 [TBL] [Abstract][Full Text] [Related]
6. A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning. Huang W; Xue Y; Wu Y PLoS One; 2019; 14(7):e0219369. PubMed ID: 31299053 [TBL] [Abstract][Full Text] [Related]
7. Neural network ensemble-based computer-aided diagnosis for differentiation of lung nodules on CT images: clinical evaluation. Chen H; Xu Y; Ma Y; Ma B Acad Radiol; 2010 May; 17(5):595-602. PubMed ID: 20167513 [TBL] [Abstract][Full Text] [Related]
8. Classification of lung nodules in CT scans using three-dimensional deep convolutional neural networks with a checkpoint ensemble method. Jung H; Kim B; Lee I; Lee J; Kang J BMC Med Imaging; 2018 Dec; 18(1):48. PubMed ID: 30509191 [TBL] [Abstract][Full Text] [Related]
9. Automated pulmonary nodule detection in CT images using 3D deep squeeze-and-excitation networks. Gong L; Jiang S; Yang Z; Zhang G; Wang L Int J Comput Assist Radiol Surg; 2019 Nov; 14(11):1969-1979. PubMed ID: 31028657 [TBL] [Abstract][Full Text] [Related]
10. Bone Suppression on Chest Radiographs for Pulmonary Nodule Detection: Comparison between a Generative Adversarial Network and Dual-Energy Subtraction. Bae K; Oh DY; Yun ID; Jeon KN Korean J Radiol; 2022 Jan; 23(1):139-149. PubMed ID: 34983100 [TBL] [Abstract][Full Text] [Related]
11. Classification of lung nodules based on CT images using squeeze-and-excitation network and aggregated residual transformations. Zhang G; Yang Z; Gong L; Jiang S; Wang L; Zhang H Radiol Med; 2020 Apr; 125(4):374-383. PubMed ID: 31916105 [TBL] [Abstract][Full Text] [Related]
12. Minimum perceivable size difference: how well can radiologists visually detect a change in lung nodule size from CT images? Solomon J; Ebner L; Christe A; Peters A; Munz J; Löbelenz L; Klaus J; Richards T; Samei E; Roos JE Eur Radiol; 2021 Apr; 31(4):1947-1955. PubMed ID: 32997175 [TBL] [Abstract][Full Text] [Related]
13. A cascade and heterogeneous neural network for CT pulmonary nodule detection and its evaluation on both phantom and patient data. Xiao Y; Wang X; Li Q; Fan R; Chen R; Shao Y; Chen Y; Gao Y; Liu A; Chen L; Liu S Comput Med Imaging Graph; 2021 Jun; 90():101889. PubMed ID: 33848755 [TBL] [Abstract][Full Text] [Related]
14. Neural network-based computer-aided diagnosis in distinguishing malignant from benign solitary pulmonary nodules by computed tomography. Chen H; Wang XH; Ma DQ; Ma BR Chin Med J (Engl); 2007 Jul; 120(14):1211-5. PubMed ID: 17697569 [TBL] [Abstract][Full Text] [Related]
15. Classification of benign and malignant lung nodules from CT images based on hybrid features. Zhang G; Yang Z; Gong L; Jiang S; Wang L Phys Med Biol; 2019 Jun; 64(12):125011. PubMed ID: 31141794 [TBL] [Abstract][Full Text] [Related]
16. Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours. Way TW; Hadjiiski LM; Sahiner B; Chan HP; Cascade PN; Kazerooni EA; Bogot N; Zhou C Med Phys; 2006 Jul; 33(7):2323-37. PubMed ID: 16898434 [TBL] [Abstract][Full Text] [Related]
17. An integrated segmentation and shape-based classification scheme for distinguishing adenocarcinomas from granulomas on lung CT. Alilou M; Beig N; Orooji M; Rajiah P; Velcheti V; Rakshit S; Reddy N; Yang M; Jacono F; Gilkeson RC; Linden P; Madabhushi A Med Phys; 2017 Jul; 44(7):3556-3569. PubMed ID: 28295386 [TBL] [Abstract][Full Text] [Related]
18. Data analysis of the Lung Imaging Database Consortium and Image Database Resource Initiative. Wang W; Luo J; Yang X; Lin H Acad Radiol; 2015 Apr; 22(4):488-95. PubMed ID: 25601306 [TBL] [Abstract][Full Text] [Related]
19. Discrimination between transient and persistent subsolid pulmonary nodules on baseline CT using deep transfer learning. Huang C; Lv W; Zhou C; Mao L; Xu Q; Li X; Qi L; Xia F; Li X; Zhang Q; Zhang L; Lu G Eur Radiol; 2020 Dec; 30(12):6913-6923. PubMed ID: 32696253 [TBL] [Abstract][Full Text] [Related]
20. How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT? Suzuki K; Doi K Acad Radiol; 2005 Oct; 12(10):1333-41. PubMed ID: 16179210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]