BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33045680)

  • 1. Protein anabolism is key to long-term survival in high-grade serous ovarian cancer.
    Wang L; Sun T; Li S; Zhang Z; Jia J; Shan B
    Transl Oncol; 2021 Jan; 14(1):100885. PubMed ID: 33045680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Hub Genes in High-Grade Serous Ovarian Cancer Using Weighted Gene Co-Expression Network Analysis.
    Wu M; Sun Y; Wu J; Liu G
    Med Sci Monit; 2020 Mar; 26():e922107. PubMed ID: 32180586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Chemoresistance-Associated Key Genes and Pathways in High-Grade Serous Ovarian Cancer by Bioinformatics Analyses.
    Wu Y; Xia L; Guo Q; Zhu J; Deng Y; Wu X
    Cancer Manag Res; 2020; 12():5213-5223. PubMed ID: 32636682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of molecular marker associated with ovarian cancer prognosis using bioinformatics analysis and experiments.
    Zheng MJ; Li X; Hu YX; Dong H; Gou R; Nie X; Liu Q; Ying-Ying H; Liu JJ; Lin B
    J Cell Physiol; 2019 Jul; 234(7):11023-11036. PubMed ID: 30633343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer.
    Yang D; He Y; Wu B; Deng Y; Wang N; Li M; Liu Y
    J Ovarian Res; 2020 Jan; 13(1):10. PubMed ID: 31987036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated Analysis To Identify Molecular Biomarkers Of High-Grade Serous Ovarian Cancer.
    Si M; Zhang J; Cao J; Xie Z; Shu S; Zhu Y; Lang J
    Onco Targets Ther; 2019; 12():10057-10075. PubMed ID: 31819501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of key genes and pathways in pelvic organ prolapse based on gene expression profiling by bioinformatics analysis.
    Zhou Q; Hong L; Wang J
    Arch Gynecol Obstet; 2018 May; 297(5):1323-1332. PubMed ID: 29546564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma.
    Zhou L; Tang H; Wang F; Chen L; Ou S; Wu T; Xu J; Guo K
    Mol Med Rep; 2018 Nov; 18(5):4185-4196. PubMed ID: 30132538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data.
    Zhang C; Peng L; Zhang Y; Liu Z; Li W; Chen S; Li G
    Med Oncol; 2017 Jun; 34(6):101. PubMed ID: 28432618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of hub genes with prognostic values in gastric cancer by bioinformatics analysis.
    Li T; Gao X; Han L; Yu J; Li H
    World J Surg Oncol; 2018 Jun; 16(1):114. PubMed ID: 29921304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.
    Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J
    Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High gene expression levels of VEGFA and CXCL8 in the peritumoral brain zone are associated with the recurrence of glioblastoma: A bioinformatics analysis.
    Luo X; Xu S; Zhong Y; Tu T; Xu Y; Li X; Wang B; Yang F
    Oncol Lett; 2019 Dec; 18(6):6171-6179. PubMed ID: 31788092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of hub genes and regulators associated with pancreatic ductal adenocarcinoma based on integrated gene expression profile analysis.
    Shang M; Zhang L; Chen X; Zheng S
    Discov Med; 2019 Sep; 28(153):159-172. PubMed ID: 31926587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of core genes and outcomes in hepatocellular carcinoma by bioinformatics analysis.
    Shen S; Kong J; Qiu Y; Yang X; Wang W; Yan L
    J Cell Biochem; 2019 Jun; 120(6):10069-10081. PubMed ID: 30525236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Metastasis-Associated Biomarkers in Synovial Sarcoma Using Bioinformatics Analysis.
    Song Y; Liu X; Wang F; Wang X; Cheng G; Peng C
    Front Genet; 2020; 11():530892. PubMed ID: 33061942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative Bioinformatics Approaches to Map Potential Novel Genes and Pathways Involved in Ovarian Cancer.
    Kumar SU; Kumar DT; Siva R; Doss CGP; Zayed H
    Front Bioeng Biotechnol; 2019; 7():391. PubMed ID: 31921802
    [No Abstract]   [Full Text] [Related]  

  • 17. Identification of differentially expressed metastatic genes and their signatures to predict the overall survival of uveal melanoma patients by bioinformatics analysis.
    Zhao DD; Zhao X; Li WT
    Int J Ophthalmol; 2020; 13(7):1046-1053. PubMed ID: 32685390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of hub genes to regulate breast cancer metastasis to brain by bioinformatics analyses.
    Tang D; Zhao X; Zhang L; Wang Z; Wang C
    J Cell Biochem; 2019 Jun; 120(6):9522-9531. PubMed ID: 30506958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of genes and pathways in esophageal adenocarcinoma using bioinformatics analysis.
    He F; Ai B; Tian L
    Biomed Rep; 2018 Oct; 9(4):305-312. PubMed ID: 30233782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FN1, SPARC, and SERPINE1 are highly expressed and significantly related to a poor prognosis of gastric adenocarcinoma revealed by microarray and bioinformatics.
    Li L; Zhu Z; Zhao Y; Zhang Q; Wu X; Miao B; Cao J; Fei S
    Sci Rep; 2019 May; 9(1):7827. PubMed ID: 31127138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.