These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33045691)

  • 1. Online monitoring of volatile organic compounds emitted from human bronchial epithelial cells as markers for oxidative stress.
    Cassagnes LE; Leni Z; Håland A; Bell DM; Zhu L; Bertrand A; Baltensperger U; El Haddad I; Wisthaler A; Geiser M; Dommen J
    J Breath Res; 2020 Dec; 15(1):. PubMed ID: 33045691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Early Biological Effects of Isoprene-Derived Particulate Matter Enhanced by Anthropogenic Pollutants.
    Surratt JD; Lin YH; Arashiro M; Vizuete WG; Zhang Z; Gold A; Jaspers I; Fry RC
    Res Rep Health Eff Inst; 2019 Mar; 2019(198):1-54. PubMed ID: 31872748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular and Acellular Assays for Measuring Oxidative Stress Induced by Ambient and Laboratory-Generated Aerosols.
    Ng NL; Tuet WY; Chen Y; Fok S; Gao D; Tagle Rodriguez MS; Klein M; Grosberg A; Weber RJ; Champion JA
    Res Rep Health Eff Inst; 2019 Mar; 2019(197):1-57. PubMed ID: 31872749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The toxicological analysis of secondary organic aerosol in human lung epithelial cells and macrophages.
    Ito T; Bekki K; Fujitani Y; Hirano S
    Environ Sci Pollut Res Int; 2019 Aug; 26(22):22747-22755. PubMed ID: 31172435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prooxidant and proinflammatory potency of air pollution particulate matter (PM₂.₅₋₀.₃) produced in rural, urban, or industrial surroundings in human bronchial epithelial cells (BEAS-2B).
    Dergham M; Lepers C; Verdin A; Billet S; Cazier F; Courcot D; Shirali P; Garçon G
    Chem Res Toxicol; 2012 Apr; 25(4):904-19. PubMed ID: 22404339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal-spatial variations of the physicochemical characteristics of air pollution Particulate Matter (PM2.5-0.3) and toxicological effects in human bronchial epithelial cells (BEAS-2B).
    Dergham M; Lepers C; Verdin A; Cazier F; Billet S; Courcot D; Shirali P; Garçon G
    Environ Res; 2015 Feb; 137():256-67. PubMed ID: 25601727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of a 0.20 μm particulate matter filter decreases cytotoxicity in lung epithelial cells following air-liquid interface exposure to motorcycle exhaust.
    Yu T; Zhang X; Zhong L; Cui Q; Hu X; Li B; Wang Z; Dai Y; Zheng Y; Bin P
    Environ Pollut; 2017 Aug; 227():287-295. PubMed ID: 28477553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physico-chemical characterization of African urban aerosols (Bamako in Mali and Dakar in Senegal) and their toxic effects in human bronchial epithelial cells: description of a worrying situation.
    Val S; Liousse C; Doumbia el HT; Galy-Lacaux C; Cachier H; Marchand N; Badel A; Gardrat E; Sylvestre A; Baeza-Squiban A
    Part Fibre Toxicol; 2013 Apr; 10():10. PubMed ID: 23548138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicological Responses of α-Pinene-Derived Secondary Organic Aerosol and Its Molecular Tracers in Human Lung Cell Lines.
    Khan F; Kwapiszewska K; Zhang Y; Chen Y; Lambe AT; Kołodziejczyk A; Jalal N; Rudzinski K; Martínez-Romero A; Fry RC; Surratt JD; Szmigielski R
    Chem Res Toxicol; 2021 Mar; 34(3):817-832. PubMed ID: 33653028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wood combustion particles induce adverse effects to normal and diseased airway epithelia.
    Krapf M; Künzi L; Allenbach S; Bruns EA; Gavarini I; El-Haddad I; Slowik JG; Prévôt ASH; Drinovec L; Močnik G; Dümbgen L; Salathe M; Baumlin N; Sioutas C; Baltensperger U; Dommen J; Geiser M
    Environ Sci Process Impacts; 2017 Apr; 19(4):538-548. PubMed ID: 28239691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of PM10 characteristics involved in cellular responses in human bronchial epithelial cells (Beas-2B).
    Van Den Heuvel R; Den Hond E; Govarts E; Colles A; Koppen G; Staelens J; Mampaey M; Janssen N; Schoeters G
    Environ Res; 2016 Aug; 149():48-56. PubMed ID: 27177354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro evaluation of organic extractable matter from ambient PM
    Abbas I; Badran G; Verdin A; Ledoux F; Roumie M; Lo Guidice JM; Courcot D; Garçon G
    Environ Res; 2019 Apr; 171():510-522. PubMed ID: 30743243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulmonary and systemic toxicity in rats following inhalation exposure of 3-D printer emissions from acrylonitrile butadiene styrene (ABS) filament.
    Farcas MT; McKinney W; Qi C; Mandler KW; Battelli L; Friend SA; Stefaniak AB; Jackson M; Orandle M; Winn A; Kashon M; LeBouf RF; Russ KA; Hammond DR; Burns D; Ranpara A; Thomas TA; Matheson J; Qian Y
    Inhal Toxicol; 2020; 32(11-12):403-418. PubMed ID: 33076715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Air pollution-derived PM
    Leclercq B; Kluza J; Antherieu S; Sotty J; Alleman LY; Perdrix E; Loyens A; Coddeville P; Lo Guidice JM; Marchetti P; Garçon G
    Environ Pollut; 2018 Dec; 243(Pt B):1434-1449. PubMed ID: 30278417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of human bronchial epithelial cells (BEAS-2B) to study immunological markers resulting from exposure to PM(2.5) organic extract from Puerto Rico.
    Fuentes-Mattei E; Rivera E; Gioda A; Sanchez-Rivera D; Roman-Velazquez FR; Jimenez-Velez BD
    Toxicol Appl Pharmacol; 2010 Mar; 243(3):381-9. PubMed ID: 20026096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of atmospheric aging processes on in vitro induced oxidative stress and chemical composition of biomass burning aerosols.
    Li J; Li J; Wang G; Ho KF; Dai W; Zhang T; Wang Q; Wu C; Li L; Li L; Zhang Q
    J Hazard Mater; 2021 Jan; 401():123750. PubMed ID: 33113732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Atmospheric Aging on Soot Particle Toxicity in Lung Cell Models at the Air-Liquid Interface: Differential Toxicological Impacts of Biogenic and Anthropogenic Secondary Organic Aerosols (SOAs).
    Offer S; Hartner E; Di Bucchianico S; Bisig C; Bauer S; Pantzke J; Zimmermann EJ; Cao X; Binder S; Kuhn E; Huber A; Jeong S; Käfer U; Martens P; Mesceriakovas A; Bendl J; Brejcha R; Buchholz A; Gat D; Hohaus T; Rastak N; Jakobi G; Kalberer M; Kanashova T; Hu Y; Ogris C; Marsico A; Theis F; Pardo M; Gröger T; Oeder S; Orasche J; Paul A; Ziehm T; Zhang ZH; Adam T; Sippula O; Sklorz M; Schnelle-Kreis J; Czech H; Kiendler-Scharr A; Rudich Y; Zimmermann R
    Environ Health Perspect; 2022 Feb; 130(2):27003. PubMed ID: 35112925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytotoxicity and genotoxicity in human lung epithelial A549 cells caused by airborne volatile organic compounds emitted from pine wood and oriented strand boards.
    Gminski R; Tang T; Mersch-Sundermann V
    Toxicol Lett; 2010 Jun; 196(1):33-41. PubMed ID: 20362040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the oxidative potential of primary (POA) and secondary (SOA) organic aerosols derived from α-pinene and gasoline engine exhaust precursors.
    Lovett C; Baasiri M; Atwi K; Sowlat MH; Shirmohammadi F; Shihadeh AL; Sioutas C
    F1000Res; 2018; 7():1031. PubMed ID: 30828421
    [No Abstract]   [Full Text] [Related]  

  • 20. Cardiopulmonary response to inhalation of biogenic secondary organic aerosol.
    McDonald JD; Doyle-Eisele M; Campen MJ; Seagrave J; Holmes T; Lund A; Surratt JD; Seinfeld JH; Rohr AC; Knipping EM
    Inhal Toxicol; 2010 Feb; 22(3):253-65. PubMed ID: 20148748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.