These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33045956)

  • 21. Thermally activated charge transport in microbial protein nanowires.
    Lampa-Pastirk S; Veazey JP; Walsh KA; Feliciano GT; Steidl RJ; Tessmer SH; Reguera G
    Sci Rep; 2016 Mar; 6():23517. PubMed ID: 27009596
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular dissection of bacterial nanowires.
    Boesen T; Nielsen LP
    mBio; 2013 May; 4(3):e00270-13. PubMed ID: 23653449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diving into the redox properties of Geobacter sulfurreducens cytochromes: a model for extracellular electron transfer.
    Santos TC; Silva MA; Morgado L; Dantas JM; Salgueiro CA
    Dalton Trans; 2015 May; 44(20):9335-44. PubMed ID: 25906375
    [TBL] [Abstract][Full Text] [Related]  

  • 24.
    Ueki T; Nevin KP; Rotaru AE; Wang LY; Ward JE; Woodard TL; Lovley DR
    mBio; 2018 Jul; 9(4):. PubMed ID: 29991583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics.
    Malvankar NS; Lovley DR
    ChemSusChem; 2012 Jun; 5(6):1039-46. PubMed ID: 22614997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatially Resolved Chemical Analysis of Geobacter sulfurreducens Cell Surface.
    Lebedev N; Stroud RM; Yates MD; Tender LM
    ACS Nano; 2019 Apr; 13(4):4834-4842. PubMed ID: 30943001
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbes, cables, and an electrical touch.
    Reguera G
    Int Microbiol; 2015 Sep; 18(3):151-7. PubMed ID: 27036742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A long way to the electrode: how do Geobacter cells transport their electrons?
    Bonanni PS; Schrott GD; Busalmen JP
    Biochem Soc Trans; 2012 Dec; 40(6):1274-9. PubMed ID: 23176467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Significance of a Posttranslational Modification of the PilA Protein of Geobacter sulfurreducens for Surface Attachment, Biofilm Formation, and Growth on Insoluble Extracellular Electron Acceptors.
    Richter LV; Franks AE; Weis RM; Sandler SJ
    J Bacteriol; 2017 Apr; 199(8):. PubMed ID: 28138101
    [No Abstract]   [Full Text] [Related]  

  • 30. Long-distance electron transport in individual, living cable bacteria.
    Bjerg JT; Boschker HTS; Larsen S; Berry D; Schmid M; Millo D; Tataru P; Meysman FJR; Wagner M; Nielsen LP; Schramm A
    Proc Natl Acad Sci U S A; 2018 May; 115(22):5786-5791. PubMed ID: 29735671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stepping stones in the electron transport from cells to electrodes in Geobacter sulfurreducens biofilms.
    Bonanni PS; Massazza D; Busalmen JP
    Phys Chem Chem Phys; 2013 Jul; 15(25):10300-6. PubMed ID: 23698325
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens Yields Pili with Exceptional Conductivity.
    Tan Y; Adhikari RY; Malvankar NS; Ward JE; Woodard TL; Nevin KP; Lovley DR
    mBio; 2017 Jan; 8(1):. PubMed ID: 28096491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced Growth of Pilin-Deficient Geobacter sulfurreducens Mutants in Carbon Poor and Electron Donor Limiting Conditions.
    Semenec L; Vergara IA; Laloo AE; Mathews ER; Bond PL; Franks AE
    Microb Ecol; 2019 Oct; 78(3):618-630. PubMed ID: 30759269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A framework for modeling electroactive microbial biofilms performing direct electron transfer.
    Korth B; Rosa LF; Harnisch F; Picioreanu C
    Bioelectrochemistry; 2015 Dec; 106(Pt A):194-206. PubMed ID: 25921352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction studies between periplasmic cytochromes provide insights into extracellular electron transfer pathways of
    Fernandes AP; Nunes TC; Paquete CM; Salgueiro CA
    Biochem J; 2017 Feb; 474(5):797-808. PubMed ID: 28093471
    [No Abstract]   [Full Text] [Related]  

  • 36. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors.
    Levar CE; Chan CH; Mehta-Kolte MG; Bond DR
    mBio; 2014 Nov; 5(6):e02034. PubMed ID: 25425235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Long-distance electron transport in multicellular freshwater cable bacteria.
    Yang T; Chavez MS; Niman CM; Xu S; El-Naggar MY
    Elife; 2024 Aug; 12():. PubMed ID: 39207443
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-distance electron transfer in a filamentous Gram-positive bacterium.
    Yang Y; Wang Z; Gan C; Klausen LH; Bonné R; Kong G; Luo D; Meert M; Zhu C; Sun G; Guo J; Ma Y; Bjerg JT; Manca J; Xu M; Nielsen LP; Dong M
    Nat Commun; 2021 Mar; 12(1):1709. PubMed ID: 33731718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Post-translational flavinylation is associated with diverse extracytosolic redox functionalities throughout bacterial life.
    Méheust R; Huang S; Rivera-Lugo R; Banfield JF; Light SH
    Elife; 2021 May; 10():. PubMed ID: 34032212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A pilin chaperone required for the expression of electrically conductive Geobacter sulfurreducens pili.
    Liu X; Zhan J; Jing X; Zhou S; Lovley DR
    Environ Microbiol; 2019 Jul; 21(7):2511-2522. PubMed ID: 31012224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.