These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Diving into the redox properties of Geobacter sulfurreducens cytochromes: a model for extracellular electron transfer. Santos TC; Silva MA; Morgado L; Dantas JM; Salgueiro CA Dalton Trans; 2015 May; 44(20):9335-44. PubMed ID: 25906375 [TBL] [Abstract][Full Text] [Related]
25. Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics. Malvankar NS; Lovley DR ChemSusChem; 2012 Jun; 5(6):1039-46. PubMed ID: 22614997 [TBL] [Abstract][Full Text] [Related]
27. Microbes, cables, and an electrical touch. Reguera G Int Microbiol; 2015 Sep; 18(3):151-7. PubMed ID: 27036742 [TBL] [Abstract][Full Text] [Related]
28. A long way to the electrode: how do Geobacter cells transport their electrons? Bonanni PS; Schrott GD; Busalmen JP Biochem Soc Trans; 2012 Dec; 40(6):1274-9. PubMed ID: 23176467 [TBL] [Abstract][Full Text] [Related]
29. Significance of a Posttranslational Modification of the PilA Protein of Geobacter sulfurreducens for Surface Attachment, Biofilm Formation, and Growth on Insoluble Extracellular Electron Acceptors. Richter LV; Franks AE; Weis RM; Sandler SJ J Bacteriol; 2017 Apr; 199(8):. PubMed ID: 28138101 [No Abstract] [Full Text] [Related]
30. Long-distance electron transport in individual, living cable bacteria. Bjerg JT; Boschker HTS; Larsen S; Berry D; Schmid M; Millo D; Tataru P; Meysman FJR; Wagner M; Nielsen LP; Schramm A Proc Natl Acad Sci U S A; 2018 May; 115(22):5786-5791. PubMed ID: 29735671 [TBL] [Abstract][Full Text] [Related]
31. Stepping stones in the electron transport from cells to electrodes in Geobacter sulfurreducens biofilms. Bonanni PS; Massazza D; Busalmen JP Phys Chem Chem Phys; 2013 Jul; 15(25):10300-6. PubMed ID: 23698325 [TBL] [Abstract][Full Text] [Related]
32. Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens Yields Pili with Exceptional Conductivity. Tan Y; Adhikari RY; Malvankar NS; Ward JE; Woodard TL; Nevin KP; Lovley DR mBio; 2017 Jan; 8(1):. PubMed ID: 28096491 [TBL] [Abstract][Full Text] [Related]
33. Enhanced Growth of Pilin-Deficient Geobacter sulfurreducens Mutants in Carbon Poor and Electron Donor Limiting Conditions. Semenec L; Vergara IA; Laloo AE; Mathews ER; Bond PL; Franks AE Microb Ecol; 2019 Oct; 78(3):618-630. PubMed ID: 30759269 [TBL] [Abstract][Full Text] [Related]
34. A framework for modeling electroactive microbial biofilms performing direct electron transfer. Korth B; Rosa LF; Harnisch F; Picioreanu C Bioelectrochemistry; 2015 Dec; 106(Pt A):194-206. PubMed ID: 25921352 [TBL] [Abstract][Full Text] [Related]
35. Interaction studies between periplasmic cytochromes provide insights into extracellular electron transfer pathways of Fernandes AP; Nunes TC; Paquete CM; Salgueiro CA Biochem J; 2017 Feb; 474(5):797-808. PubMed ID: 28093471 [No Abstract] [Full Text] [Related]
36. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors. Levar CE; Chan CH; Mehta-Kolte MG; Bond DR mBio; 2014 Nov; 5(6):e02034. PubMed ID: 25425235 [TBL] [Abstract][Full Text] [Related]
37. Long-distance electron transport in multicellular freshwater cable bacteria. Yang T; Chavez MS; Niman CM; Xu S; El-Naggar MY Elife; 2024 Aug; 12():. PubMed ID: 39207443 [TBL] [Abstract][Full Text] [Related]