BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33046567)

  • 1. Flight muscle power increases with strain amplitude and decreases with cycle frequency in zebra finches (
    Bahlman JW; Baliga VB; Altshuler DL
    J Exp Biol; 2020 Nov; 223(Pt 21):. PubMed ID: 33046567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contractile activity of the pectoralis in the zebra finch according to mode and velocity of flap-bounding flight.
    Tobalske BW; Puccinelli LA; Sheridan DC
    J Exp Biol; 2005 Aug; 208(Pt 15):2895-901. PubMed ID: 16043594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematics of flap-bounding flight in the zebra finch over a wide range of speeds.
    Tobalske BW; Peacock WL; Dial KP
    J Exp Biol; 1999 Jul; 202 (Pt 13)():1725-39. PubMed ID: 10359676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of pectoralis muscle function in budgerigars Melopsitaccus undulatus and zebra finches Taeniopygia guttata in response to changing flight speed.
    Ellerby DJ; Askew GN
    J Exp Biol; 2007 Nov; 210(Pt 21):3789-97. PubMed ID: 17951420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of flight muscle power output in budgerigars Melopsittacus undulatus and zebra finches Taeniopygia guttata: in vitro muscle performance.
    Ellerby DJ; Askew GN
    J Exp Biol; 2007 Nov; 210(Pt 21):3780-8. PubMed ID: 17951419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How cockatiels (Nymphicus hollandicus) modulate pectoralis power output across flight speeds.
    Hedrick TL; Tobalske BW; Biewener AA
    J Exp Biol; 2003 Apr; 206(Pt 8):1363-78. PubMed ID: 12624171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle activation patterns and motor anatomy of Anna's hummingbirds Calypte anna and zebra finches Taeniopygia guttata.
    Donovan ER; Keeney BK; Kung E; Makan S; Wild JM; Altshuler DL
    Physiol Biochem Zool; 2013; 86(1):27-46. PubMed ID: 23303319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power output by an asynchronous flight muscle from a beetle.
    Josephson RK; Malamud JG; Stokes DR
    J Exp Biol; 2000 Sep; 203(Pt 17):2667-89. PubMed ID: 10934007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Very low force-generating ability and unusually high temperature dependency in hummingbird flight muscle fibers.
    Reiser PJ; Welch KC; Suarez RK; Altshuler DL
    J Exp Biol; 2013 Jun; 216(Pt 12):2247-56. PubMed ID: 23580719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Increases in Foraging Costs Affect Pectoralis Muscle Mass and Myostatin Expression in Female, but Not Male, Zebra Finches (Taeniopygia guttata).
    Zhang Y; Yap KN; Williams TD; Swanson DL
    Physiol Biochem Zool; 2018; 91(3):849-858. PubMed ID: 29494280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of wingbeat frequency and amplitude in flight power.
    Krishnan K; Garde B; Bennison A; Cole NC; Cole EL; Darby J; Elliott KH; Fell A; Gómez-Laich A; de Grissac S; Jessopp M; Lempidakis E; Mizutani Y; Prudor A; Quetting M; Quintana F; Robotka H; Roulin A; Ryan PG; Schalcher K; Schoombie S; Tatayah V; Tremblay F; Weimerskirch H; Whelan S; Wikelski M; Yoda K; Hedenström A; Shepard ELC
    J R Soc Interface; 2022 Aug; 19(193):20220168. PubMed ID: 36000229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zebra finch (
    Lapsansky AB; Igoe JA; Tobalske BW
    Biol Open; 2019 Jun; 8(6):. PubMed ID: 31142468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuromuscular control of hovering wingbeat kinematics in response to distinct flight challenges in the ruby-throated hummingbird, Archilochus colubris.
    Mahalingam S; Welch KC
    J Exp Biol; 2013 Nov; 216(Pt 22):4161-71. PubMed ID: 23948477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition from wing to leg forces during landing in birds.
    Provini P; Tobalske BW; Crandell KE; Abourachid A
    J Exp Biol; 2014 Aug; 217(Pt 15):2659-66. PubMed ID: 24855670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of flight speed upon muscle activity in hummingbirds.
    Tobalske BW; Biewener AA; Warrick DR; Hedrick TL; Powers DR
    J Exp Biol; 2010 Jul; 213(Pt 14):2515-23. PubMed ID: 20581281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanical power requirements of avian flight.
    Askew GN; Ellerby DJ
    Biol Lett; 2007 Aug; 3(4):445-8. PubMed ID: 17507329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromuscular control of wingbeat kinematics in Anna's hummingbirds (Calypte anna).
    Altshuler DL; Welch KC; Cho BH; Welch DB; Lin AF; Dickson WB; Dickinson MH
    J Exp Biol; 2010 Jul; 213(Pt 14):2507-14. PubMed ID: 20581280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How the hummingbird wingbeat is tuned for efficient hovering.
    Ingersoll R; Lentink D
    J Exp Biol; 2018 Oct; 221(Pt 20):. PubMed ID: 30323114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.