BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33046700)

  • 1. Initial effective stress controls the nature of earthquakes.
    Passelègue FX; Almakari M; Dublanchet P; Barras F; Fortin J; Violay M
    Nat Commun; 2020 Oct; 11(1):5132. PubMed ID: 33046700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes.
    Leeman JR; Saffer DM; Scuderi MM; Marone C
    Nat Commun; 2016 Mar; 7():11104. PubMed ID: 27029996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated rupture mechanics for slow slip events and earthquakes.
    Weng H; Ampuero JP
    Nat Commun; 2022 Nov; 13(1):7327. PubMed ID: 36443328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow earthquakes, preseismic velocity changes, and the origin of slow frictional stick-slip.
    Kaproth BM; Marone C
    Science; 2013 Sep; 341(6151):1229-32. PubMed ID: 23950495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High time-resolved studies of stick-slip show similar dilatancy to fast and slow earthquakes.
    Hu W; Ge Y; Xu Q; Huang R; Zhao Q; Gou H; McSaveney M; Chang C; Li Y; Jia X; Wang Y
    Proc Natl Acad Sci U S A; 2023 Nov; 120(47):e2305134120. PubMed ID: 37967222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes.
    Lu X; Lapusta N; Rosakis AJ
    Proc Natl Acad Sci U S A; 2007 Nov; 104(48):18931-6. PubMed ID: 18025479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connecting a broad spectrum of transient slip on the San Andreas fault.
    Tan YJ; Marsan D
    Sci Adv; 2020 Aug; 6(33):eabb2489. PubMed ID: 32851174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Across-Fault Velocity Gradients and Slip Behavior of the San Andreas Fault Near Parkfield.
    Piana Agostinetti N; Giacomuzzi G; Chiarabba C
    Geophys Res Lett; 2020 Jan; 47(1):e2019GL084480. PubMed ID: 32713971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical behaviour of fluid-lubricated faults.
    Cornelio C; Spagnuolo E; Di Toro G; Nielsen S; Violay M
    Nat Commun; 2019 Mar; 10(1):1274. PubMed ID: 30894547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slip bursts during coalescence of slow slip events in Cascadia.
    Bletery Q; Nocquet JM
    Nat Commun; 2020 May; 11(1):2159. PubMed ID: 32358488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the endpoints of earthquake ruptures.
    Wesnousky SG
    Nature; 2006 Nov; 444(7117):358-60. PubMed ID: 17108963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Illuminating the physics of dynamic friction through laboratory earthquakes on thrust faults.
    Tal Y; Rubino V; Rosakis AJ; Lapusta N
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21095-21100. PubMed ID: 32817539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow slip and the transition from fast to slow fronts in the rupture of frictional interfaces.
    Trømborg JK; Sveinsson HA; Scheibert J; Thøgersen K; Amundsen DS; Malthe-Sørenssen A
    Proc Natl Acad Sci U S A; 2014 Jun; 111(24):8764-9. PubMed ID: 24889640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extreme hydrothermal conditions at an active plate-bounding fault.
    Sutherland R; Townend J; Toy V; Upton P; Coussens J; Allen M; Baratin LM; Barth N; Becroft L; Boese C; Boles A; Boulton C; Broderick NGR; Janku-Capova L; Carpenter BM; Célérier B; Chamberlain C; Cooper A; Coutts A; Cox S; Craw L; Doan ML; Eccles J; Faulkner D; Grieve J; Grochowski J; Gulley A; Hartog A; Howarth J; Jacobs K; Jeppson T; Kato N; Keys S; Kirilova M; Kometani Y; Langridge R; Lin W; Little T; Lukacs A; Mallyon D; Mariani E; Massiot C; Mathewson L; Melosh B; Menzies C; Moore J; Morales L; Morgan C; Mori H; Niemeijer A; Nishikawa O; Prior D; Sauer K; Savage M; Schleicher A; Schmitt DR; Shigematsu N; Taylor-Offord S; Teagle D; Tobin H; Valdez R; Weaver K; Wiersberg T; Williams J; Woodman N; Zimmer M
    Nature; 2017 Jun; 546(7656):137-140. PubMed ID: 28514440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The repetition of large-earthquake ruptures.
    Sieh K
    Proc Natl Acad Sci U S A; 1996 Apr; 93(9):3764-71. PubMed ID: 11607662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic rupture initiation and propagation in a fluid-injection laboratory setup with diagnostics across multiple temporal scales.
    Gori M; Rubino V; Rosakis AJ; Lapusta N
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34916283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upper-plate rigidity determines depth-varying rupture behaviour of megathrust earthquakes.
    Sallarès V; Ranero CR
    Nature; 2019 Dec; 576(7785):96-101. PubMed ID: 31776513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates.
    Di Toro G; Goldsby DL; Tullis TE
    Nature; 2004 Jan; 427(6973):436-9. PubMed ID: 14749829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From slow to fast faulting: recent challenges in earthquake fault mechanics.
    Nielsen S
    Philos Trans A Math Phys Eng Sci; 2017 Sep; 375(2103):. PubMed ID: 28827428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Earthquakes as beacons of stress change.
    Seeber L; Armbruster JG
    Nature; 2000 Sep; 407(6800):69-72. PubMed ID: 10993073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.