These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33046761)

  • 21. A Multimodal Multi-Shank Fluorescence Neural Probe for Cell-Type-Specific Electrophysiology in Multiple Regions across a Neural Circuit.
    Chou N; Shin H; Kim K; Chae U; Jang M; Jeong UJ; Hwang KS; Yi B; Lee SE; Woo J; Cho Y; Lee C; Baker BJ; Oh SJ; Nam MH; Choi N; Cho IJ
    Adv Sci (Weinh); 2022 Jan; 9(2):e2103564. PubMed ID: 34796701
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Head-Mounted Camera System Integrates Detailed Behavioral Monitoring with Multichannel Electrophysiology in Freely Moving Mice.
    Meyer AF; Poort J; O'Keefe J; Sahani M; Linden JF
    Neuron; 2018 Oct; 100(1):46-60.e7. PubMed ID: 30308171
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptive quantization of local field potentials for wireless implants in freely moving animals: an open-source neural recording device.
    Martinez D; Clément M; Messaoudi B; Gervasoni D; Litaudon P; Buonviso N
    J Neural Eng; 2018 Apr; 15(2):025001. PubMed ID: 29219118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A wireless multi-channel recording system for freely behaving mice and rats.
    Fan D; Rich D; Holtzman T; Ruther P; Dalley JW; Lopez A; Rossi MA; Barter JW; Salas-Meza D; Herwik S; Holzhammer T; Morizio J; Yin HH
    PLoS One; 2011; 6(7):e22033. PubMed ID: 21765934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and application of a novel brain slice system that permits independent electrophysiological recordings from multiple slices.
    Stopps M; Allen N; Barrett R; Choudhury HI; Jarolimek W; Johnson M; Kuenzi FM; Maubach KA; Nagano N; Seabrook GR
    J Neurosci Methods; 2004 Jan; 132(2):137-48. PubMed ID: 14706711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neurophysiological recordings in freely moving monkeys.
    Sun NL; Lei YL; Kim BH; Ryou JW; Ma YY; Wilson FA
    Methods; 2006 Mar; 38(3):202-9. PubMed ID: 16530628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A bundled microwire array for long-term chronic single-unit recording in deep brain regions of behaving rats.
    Tseng WT; Yen CT; Tsai ML
    J Neurosci Methods; 2011 Oct; 201(2):368-76. PubMed ID: 21889539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chronically implanted hyperdrive for cortical recording and optogenetic control in behaving mice.
    Siegle JH; Carlen M; Meletis K; Tsai LH; Moore CI; Ritt J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7529-32. PubMed ID: 22256080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polymer Skulls With Integrated Transparent Electrode Arrays for Cortex-Wide Opto-Electrophysiological Recordings.
    Donaldson PD; Navabi ZS; Carter RE; Fausner SML; Ghanbari L; Ebner TJ; Swisher SL; Kodandaramaiah SB
    Adv Healthc Mater; 2022 Sep; 11(18):e2200626. PubMed ID: 35869830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A low-cost, open-source, wireless electrophysiology system.
    Ghomashchi A; Zheng Z; Majaj N; Trumpis M; Kiorpes L; Viventi J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3138-41. PubMed ID: 25570656
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New approaches for CMOS-based devices for large-scale neural recording.
    Ruther P; Paul O
    Curr Opin Neurobiol; 2015 Jun; 32():31-7. PubMed ID: 25463562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An optimized surgical approach for obtaining stable extracellular single-unit recordings from the cerebellum of head-fixed behaving mice.
    White JJ; Lin T; Brown AM; Arancillo M; Lackey EP; Stay TL; Sillitoe RV
    J Neurosci Methods; 2016 Mar; 262():21-31. PubMed ID: 26777474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of a high-density multi-channel electrode for multi-structure parallel recordings in rodents.
    Ivica N; Tamté M; Ahmed M; Richter U; Petersson P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():393-6. PubMed ID: 25569979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigating Neural Correlates of Behavior Through In Vivo Electrophysiology.
    Halladay LR
    Curr Protoc; 2023 May; 3(5):e769. PubMed ID: 37154436
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large-scale neural ensemble recording in the brains of freely behaving mice.
    Lin L; Chen G; Xie K; Zaia KA; Zhang S; Tsien JZ
    J Neurosci Methods; 2006 Jul; 155(1):28-38. PubMed ID: 16554093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and assembly of an ultra-light motorized microdrive for chronic neural recordings in small animals.
    Otchy TM; Ölveczky BP
    J Vis Exp; 2012 Nov; (69):. PubMed ID: 23169237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EEG recording in rodents, with a focus on epilepsy.
    del Campo CM; Velázquez JL; Freire MA
    Curr Protoc Neurosci; 2009 Oct; Chapter 6():Unit 6.24. PubMed ID: 19802816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An optical telemetry system for underwater recording of electromyogram and neuronal activity from non-tethered crayfish.
    Tsuchida Y; Hama N; Takahata M
    J Neurosci Methods; 2004 Aug; 137(1):103-9. PubMed ID: 15196832
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A simple micromanipulator for multiple uses in freely moving rats: electrophysiology, voltammetry, and simultaneous intracerebral infusions.
    Rebec GV; Langley PE; Pierce RC; Wang Z; Heidenreich BA
    J Neurosci Methods; 1993 Apr; 47(1-2):53-9. PubMed ID: 8321014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protocol for remapping of place cells in disease mouse models.
    Jun H; Chavez J; Bramian A; Igarashi KM
    STAR Protoc; 2021 Sep; 2(3):100759. PubMed ID: 34467228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.