These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 33046875)

  • 1. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants.
    Debernardi JM; Tricoli DM; Ercoli MF; Hayta S; Ronald P; Palatnik JF; Dubcovsky J
    Nat Biotechnol; 2020 Nov; 38(11):1274-1279. PubMed ID: 33046875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient, genotype-independent transformation and gene editing in watermelon (Citrullus lanatus) using a chimeric ClGRF4-GIF1 gene.
    Feng Q; Xiao L; He Y; Liu M; Wang J; Tian S; Zhang X; Yuan L
    J Integr Plant Biol; 2021 Dec; 63(12):2038-2042. PubMed ID: 34862751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of transgene integration and gene-editing events in wheat (
    Lopos LC; Bykova NV; Robinson J; Brown S; Ward K; Bilichak A
    Front Genome Ed; 2023; 5():1265103. PubMed ID: 38192430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MIR396-GRF/GIF enhances in planta shoot regeneration of Dendrobium catenatum.
    Yang Z; Zhao M; Zhang X; Gu L; Li J; Ming F; Wang M; Wang Z
    BMC Genomics; 2024 May; 25(1):543. PubMed ID: 38822270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rapid and highly efficient sorghum transformation strategy using GRF4-GIF1/ternary vector system.
    Li J; Pan W; Zhang S; Ma G; Li A; Zhang H; Liu L
    Plant J; 2024 Mar; 117(5):1604-1613. PubMed ID: 38038993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GRF-GIF chimeric proteins enhance in vitro regeneration and Agrobacterium-mediated transformation efficiencies of lettuce (Lactuca spp.).
    Bull T; Debernardi J; Reeves M; Hill T; Bertier L; Van Deynze A; Michelmore R
    Plant Cell Rep; 2023 Mar; 42(3):629-643. PubMed ID: 36695930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome edited wheat- current advances for the second green revolution.
    Awan MJA; Pervaiz K; Rasheed A; Amin I; Saeed NA; Dhugga KS; Mansoor S
    Biotechnol Adv; 2022 Nov; 60():108006. PubMed ID: 35732256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GRF-GIF duo and GRF-GIF-BBM: novel transformation methodologies for enhancing regeneration efficiency of genome-edited recalcitrant crops.
    Yarra R; Krysan PJ
    Planta; 2023 Feb; 257(3):60. PubMed ID: 36801980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient transformation method for genome editing of elite bread wheat cultivars.
    Biswal AK; Hernandez LRB; Castillo AIR; Debernardi JM; Dhugga KS
    Front Plant Sci; 2023; 14():1135047. PubMed ID: 37275249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice.
    Toda E; Koiso N; Takebayashi A; Ichikawa M; Kiba T; Osakabe K; Osakabe Y; Sakakibara H; Kato N; Okamoto T
    Nat Plants; 2019 Apr; 5(4):363-368. PubMed ID: 30911123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion.
    Zong Y; Wang Y; Li C; Zhang R; Chen K; Ran Y; Qiu JL; Wang D; Gao C
    Nat Biotechnol; 2017 May; 35(5):438-440. PubMed ID: 28244994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanism of microRNA396 mediating pistil development in Arabidopsis.
    Liang G; He H; Li Y; Wang F; Yu D
    Plant Physiol; 2014 Jan; 164(1):249-58. PubMed ID: 24285851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Efficient Agrobacterium-Mediated Transformation Protocol for Hexaploid and Tetraploid Wheat.
    Hayta S; Smedley MA; Clarke M; Forner M; Harwood WA
    Curr Protoc; 2021 Mar; 1(3):e58. PubMed ID: 33656289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A competence of embryo-derived tissues of tetraploid cultivated wheat species Triticum dicoccum and Triticum timopheevii for efficient and stable transgenesis mediated by particle inflow gun.
    Miroshnichenko D; Klementyeva A; Pushin A; Dolgov S
    BMC Plant Biol; 2020 Oct; 20(Suppl 1):442. PubMed ID: 33050908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis.
    Kim JH; Kende H
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13374-9. PubMed ID: 15326298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants.
    Pellegrineschi A; Noguera LM; Skovmand B; Brito RM; Velazquez L; Salgado MM; Hernandez R; Warburton M; Hoisington D
    Genome; 2002 Apr; 45(2):421-30. PubMed ID: 11962639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing wheat regeneration and genetic transformation through overexpression of TaLAX1.
    Yu Y; Yu H; Peng J; Yao WJ; Wang YP; Zhang FL; Wang SR; Zhao Y; Zhao XY; Zhang XS; Su YH
    Plant Commun; 2024 May; 5(5):100738. PubMed ID: 37897039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Transformation and Regeneration of
    Liang Y; Biswas S; Kim B; Bailey-Serres J; Septiningsih EM
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34209672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants.
    Ma X; Zhang Q; Zhu Q; Liu W; Chen Y; Qiu R; Wang B; Yang Z; Li H; Lin Y; Xie Y; Shen R; Chen S; Wang Z; Chen Y; Guo J; Chen L; Zhao X; Dong Z; Liu YG
    Mol Plant; 2015 Aug; 8(8):1274-84. PubMed ID: 25917172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-Wide Identification and Analysis of the Growth-Regulating Factor (GRF) Gene Family and GRF-Interacting Factor Family in Triticum aestivum L.
    Zan T; Zhang L; Xie T; Li L
    Biochem Genet; 2020 Oct; 58(5):705-724. PubMed ID: 32399658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.