BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33047317)

  • 1. Pollen development in cotton (Gossypium hirsutum) is highly sensitive to heat exposure during the tetrad stage.
    Masoomi-Aladizgeh F; Najeeb U; Hamzelou S; Pascovici D; Amirkhani A; Tan DKY; Mirzaei M; Haynes PA; Atwell BJ
    Plant Cell Environ; 2021 Jul; 44(7):2150-2166. PubMed ID: 33047317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of gene expression in pollen of cotton (Gossypium hirsutum) indicate downregulation as a feature of thermotolerance.
    Masoomi-Aladizgeh F; McKay MJ; Asar Y; Haynes PA; Atwell BJ
    Plant J; 2022 Feb; 109(4):965-979. PubMed ID: 34837283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbohydrate metabolism in the subtending leaf cross-acclimates to waterlogging and elevated temperature stress and influences boll biomass in cotton (Gossypium hirsutum).
    Wang H; Chen Y; Hu W; Wang S; Snider JL; Zhou Z
    Physiol Plant; 2017 Nov; 161(3):339-354. PubMed ID: 28581029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome survey sequencing of wild cotton (Gossypium robinsonii) reveals insights into proteomic responses of pollen to extreme heat.
    Masoomi-Aladizgeh F; Kamath KS; Haynes PA; Atwell BJ
    Plant Cell Environ; 2022 Apr; 45(4):1242-1256. PubMed ID: 35092006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous Ethylene Concentration Is Not a Major Determinant of Fruit Abscission in Heat-Stressed Cotton (
    Najeeb U; Sarwar M; Atwell BJ; Bange MP; Tan DKY
    Front Plant Sci; 2017; 8():1615. PubMed ID: 28983303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.
    Ding M; Jiang Y; Cao Y; Lin L; He S; Zhou W; Rong J
    Gene; 2014 Feb; 535(2):273-85. PubMed ID: 24279997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of reproductive heat tolerance in plants.
    Burke JJ; Chen J
    PLoS One; 2015; 10(4):e0122933. PubMed ID: 25849955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of source leaf responses to water-deficit stresses in cotton using a novel stress bioassay.
    Burke JJ
    Plant Physiol; 2007 Jan; 143(1):108-21. PubMed ID: 17071650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Waterlogging during flowering and boll forming stages affects sucrose metabolism in the leaves subtending the cotton boll and its relationship with boll weight.
    Kuai J; Liu Z; Wang Y; Meng Y; Chen B; Zhao W; Zhou Z; Oosterhuis DM
    Plant Sci; 2014 Jun; 223():79-98. PubMed ID: 24767118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salicylic acid-functionalised chitosan nanoparticles restore impaired sucrose metabolism in the developing anther of cotton (
    Savani KR; Gajera HP; Hirpara DG; Savaliya DD; Kandoliya UK
    Funct Plant Biol; 2023 Sep; 50(9):736-751. PubMed ID: 37536348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in carbohydrate distribution in cotton photosynthetic organs and increase in boll weight reduce yield loss under high temperature.
    Yang L; Duan J; Liu Y; Hu W; Liu X; Wang Y; Zhou Z; Zhao W
    J Exp Bot; 2024 Jun; 75(11):3483-3499. PubMed ID: 38483180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Soil Salinity on Sucrose Metabolism in Cotton Leaves.
    Peng J; Liu J; Zhang L; Luo J; Dong H; Ma Y; Zhao X; Chen B; Sui N; Zhou Z; Meng Y
    PLoS One; 2016; 11(5):e0156241. PubMed ID: 27228029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of heat stress responsive factors on growth and physiology of cotton (Gossypium hirsutum L.).
    Saleem MA; Malik W; Qayyum A; Ul-Allah S; Ahmad MQ; Afzal H; Amjid MW; Ateeq MF; Zia ZU
    Mol Biol Rep; 2021 Feb; 48(2):1069-1079. PubMed ID: 33609263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of heat shock factor and heat shock protein 70 genes during maize pollen development.
    Gagliardi D; Breton C; Chaboud A; Vergne P; Dumas C
    Plant Mol Biol; 1995 Nov; 29(4):841-56. PubMed ID: 8541509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis of anthers from wild-type and photosensitive genetic male sterile mutant cotton (Gossypium hirsutum L.).
    Liu J; Pang C; Wei H; Song M; Meng Y; Fan S; Yu S
    BMC Plant Biol; 2014 Dec; 14():390. PubMed ID: 25547499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gel-free/label-free proteomic analysis of developing rice grains under heat stress.
    Timabud T; Yin X; Pongdontri P; Komatsu S
    J Proteomics; 2016 Feb; 133():1-19. PubMed ID: 26655677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diurnal pollen tube growth rate is slowed by high temperature in field-grown Gossypium hirsutum pistils.
    Snider JL; Oosterhuis DM; Kawakami EM
    J Plant Physiol; 2011 Mar; 168(5):441-8. PubMed ID: 20832140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco.
    Volkov RA; Panchuk II; Schöffl F
    Plant Mol Biol; 2005 Mar; 57(4):487-502. PubMed ID: 15821976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).
    Wang J; Sun N; Deng T; Zhang L; Zuo K
    BMC Genomics; 2014 Nov; 15(1):961. PubMed ID: 25378022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anther response to high-temperature stress during development and pollen thermotolerance heterosis as revealed by pollen tube growth and in vitro pollen vigor analysis in upland cotton.
    Song G; Wang M; Zeng B; Zhang J; Jiang C; Hu Q; Geng G; Tang C
    Planta; 2015 May; 241(5):1271-85. PubMed ID: 25672505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.