These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Adsorption of randomly annealed polyampholytes at the silica-water interface. Tran Y; Perrin P; Deroo S; Lafuma F Langmuir; 2006 Aug; 22(18):7543-51. PubMed ID: 16922531 [TBL] [Abstract][Full Text] [Related]
4. Rapid and Efficient Coacervate Extraction of Cationic Industrial Dyes from Wastewater. Valley B; Jing B; Ferreira M; Zhu Y ACS Appl Mater Interfaces; 2019 Feb; 11(7):7472-7478. PubMed ID: 30689337 [TBL] [Abstract][Full Text] [Related]
5. Surface and anti-fouling properties of a polyampholyte hydrogel grafted onto a polyethersulfone membrane. Zhang W; Yang Z; Kaufman Y; Bernstein R J Colloid Interface Sci; 2018 May; 517():155-165. PubMed ID: 29421675 [TBL] [Abstract][Full Text] [Related]
6. Molecular dynamics simulations of polyelectrolyte-polyampholyte complexes. Effect of solvent quality and salt concentration. Jeon J; Dobrynin AV J Phys Chem B; 2006 Dec; 110(48):24652-65. PubMed ID: 17134228 [TBL] [Abstract][Full Text] [Related]
7. Molecular design of self-coacervation phenomena in block polyampholytes. Danielsen SPO; McCarty J; Shea JE; Delaney KT; Fredrickson GH Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8224-8232. PubMed ID: 30948640 [TBL] [Abstract][Full Text] [Related]
8. Transfer Matrix Model of pH Effects in Polymeric Complex Coacervation. Knoerdel AR; Blocher McTigue WC; Sing CE J Phys Chem B; 2021 Aug; 125(31):8965-8980. PubMed ID: 34328340 [TBL] [Abstract][Full Text] [Related]
10. Small ion effects on self-coacervation phenomena in block polyampholytes. Danielsen SPO; McCarty J; Shea JE; Delaney KT; Fredrickson GH J Chem Phys; 2019 Jul; 151(3):034904. PubMed ID: 31325933 [TBL] [Abstract][Full Text] [Related]
11. Monte Carlo simulations of polyampholyte-polyelectrolyte complexes: effect of charge sequence and strength of electrostatic interactions. Jeon J; Dobrynin AV Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061803. PubMed ID: 16241250 [TBL] [Abstract][Full Text] [Related]
12. Structure of Liquid Coacervates formed by Oppositely Charged Polyelectrolytes. Rubinstein M; Liao Q; Panyukov S Macromolecules; 2018 Dec; 51(23):9572-9588. PubMed ID: 30853717 [TBL] [Abstract][Full Text] [Related]
13. Complexation and coacervation of like-charged polyelectrolytes inspired by mussels. Kim S; Huang J; Lee Y; Dutta S; Yoo HY; Jung YM; Jho Y; Zeng H; Hwang DS Proc Natl Acad Sci U S A; 2016 Feb; 113(7):E847-53. PubMed ID: 26831090 [TBL] [Abstract][Full Text] [Related]
14. A monte carlo study of weak polyampholytes: stiffness and primary structure influences on titration curves and chain conformations. Ulrich S; Seijo M; Stoll S J Phys Chem B; 2007 Jul; 111(29):8459-67. PubMed ID: 17411088 [TBL] [Abstract][Full Text] [Related]
16. Charge regulation mechanism in end-tethered weak polyampholytes. Prusty D; Nap RJ; Szleifer I; Olvera de la Cruz M Soft Matter; 2020 Oct; 16(38):8832-8847. PubMed ID: 32901638 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of Diblock Polyampholyte PAMPS-b-PMAPTAC and Its Adsorption on Bentonite. Lin L; Luo Y; Li X Polymers (Basel); 2018 Dec; 11(1):. PubMed ID: 30960032 [TBL] [Abstract][Full Text] [Related]
18. Comparative Study of Oil Recovery Using Amphoteric Terpolymer and Hydrolyzed Polyacrylamide. Gussenov IS; Mukhametgazy N; Shakhvorostov AV; Kudaibergenov SE Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956610 [TBL] [Abstract][Full Text] [Related]
19. Theory of polyelectrolyte complexation-Complex coacervates are self-coacervates. Delaney KT; Fredrickson GH J Chem Phys; 2017 Jun; 146(22):224902. PubMed ID: 29166038 [TBL] [Abstract][Full Text] [Related]
20. Functional macroporous amphoteric polyelectrolyte monoliths with tunable structures and properties through emulsion-templated synthesis. Jurjevec S; Žagar E; Kovačič S J Colloid Interface Sci; 2020 Sep; 575():480-488. PubMed ID: 32413794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]