These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33047970)

  • 21. Biomechanical analysis of lumbar interbody fusion cages with various lordotic angles: a finite element study.
    Zhang Z; Fogel GR; Liao Z; Sun Y; Liu W
    Comput Methods Biomech Biomed Engin; 2018 Feb; 21(3):247-254. PubMed ID: 29513028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of a Unilateral Bridging Cage for Lumbar Interbody Fusion: 2-Year Clinical Results and Fusion Rate with a Focus on Subsidence.
    Heinz von der Hoeh N; Villa T; Galbusera F; Voelker A; Spiegl UA; Jarvers JS; Heyde CE
    World Neurosurg; 2018 Aug; 116():e308-e314. PubMed ID: 29738859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of radiographic and clinical outcomes of an articulating expandable interbody cage in minimally invasive transforaminal lumbar interbody fusion for spondylolisthesis.
    Massie LW; Zakaria HM; Schultz LR; Basheer A; Buraimoh MA; Chang V
    Neurosurg Focus; 2018 Jan; 44(1):E8. PubMed ID: 29290133
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Primary stiffness of a modified transforaminal lumbar interbody fusion cage with integrated screw fixation: cadaveric biomechanical study.
    Keiler A; Schmoelz W; Erhart S; Gnanalingham K
    Spine (Phila Pa 1976); 2014 Aug; 39(17):E994-E1000. PubMed ID: 24875958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanical analysis of an expandable lateral cage and a static transforaminal lumbar interbody fusion cage with posterior instrumentation in an in vitro spondylolisthesis model.
    Mantell M; Cyriac M; Haines CM; Gudipally M; O'Brien JR
    J Neurosurg Spine; 2016 Jan; 24(1):32-8. PubMed ID: 26384133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanical evaluation of four surgical scenarios of lumbar fusion with hyperlordotic interbody cage: A finite element study.
    Zhang Z; Fogel GR; Liao Z; Sun Y; Sun X; Liu W
    Biomed Mater Eng; 2018; 29(4):485-497. PubMed ID: 30282345
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MIS Expandable Interbody Spacers: A Literature Review and Biomechanical Comparison of an Expandable MIS TLIF With Conventional TLIF and ALIF.
    Cannestra AF; Peterson MD; Parker SR; Roush TF; Bundy JV; Turner AW
    Spine (Phila Pa 1976); 2016 Apr; 41 Suppl 8():S44-9. PubMed ID: 26825792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Finite element model predicts the biomechanical performance of transforaminal lumbar interbody fusion with various porous additive manufactured cages.
    Zhang Z; Li H; Fogel GR; Xiang D; Liao Z; Liu W
    Comput Biol Med; 2018 Apr; 95():167-174. PubMed ID: 29501735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of Biomechanical Performance Among Posterolateral Fusion and Transforaminal, Extreme, and Oblique Lumbar Interbody Fusion: A Finite Element Analysis.
    Lu T; Lu Y
    World Neurosurg; 2019 Sep; 129():e890-e899. PubMed ID: 31226452
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation: segmental stability and the effects on adjacent motion segments.
    Sim HB; Murovic JA; Cho BY; Lim TJ; Park J
    J Neurosurg Spine; 2010 Jun; 12(6):700-8. PubMed ID: 20515358
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of cage geometry on sagittal alignment in instrumented posterior lumbar interbody fusion.
    Gödde S; Fritsch E; Dienst M; Kohn D
    Spine (Phila Pa 1976); 2003 Aug; 28(15):1693-9. PubMed ID: 12897494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relationship between the elastic modulus of the cage material and the biomechanical properties of transforaminal lumbar interbody fusion: A logarithmic regression analysis based on parametric finite element simulations.
    Lu T; Ren J; Sun Z; Zhang J; Xu K; Sun L; Yang P; Wang D; Lian Y; Zhai J; Gou Y; Ma Y; Ji S; He X; Yang B
    Comput Methods Programs Biomed; 2022 Feb; 214():106570. PubMed ID: 34896688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vertebral Body Hounsfield Units are Associated With Cage Subsidence After Transforaminal Lumbar Interbody Fusion With Unilateral Pedicle Screw Fixation.
    Mi J; Li K; Zhao X; Zhao CQ; Li H; Zhao J
    Clin Spine Surg; 2017 Oct; 30(8):E1130-E1136. PubMed ID: 27906743
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of posterior versus transforaminal lumbar interbody fusion using finite element analysis. Influence on adjacent segmental degeneration.
    Tang S
    Saudi Med J; 2015 Aug; 36(8):993-6. PubMed ID: 26219453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanical evaluation of autologous bone-cage in posterior lumbar interbody fusion: a finite element analysis.
    Zhu H; Zhong W; Zhang P; Liu X; Huang J; Liu F; Li J
    BMC Musculoskelet Disord; 2020 Jun; 21(1):379. PubMed ID: 32534573
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro study of biomechanical behavior of anterior and transforaminal lumbar interbody instrumentation techniques.
    Niemeyer TK; Koriller M; Claes L; Kettler A; Werner K; Wilke HJ
    Neurosurgery; 2006 Dec; 59(6):1271-6; discussion 1276-7. PubMed ID: 17277690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Do intraoperative radiographs predict final lumbar sagittal alignment following single-level transforaminal lumbar interbody fusion?
    Salem KMI; Eranki AP; Paquette S; Boyd M; Street J; Kwon BK; Fisher CG; Dvorak MF
    J Neurosurg Spine; 2018 May; 28(5):486-491. PubMed ID: 29451437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The biomechanical study of a modified lumbar interbody fusion-crenel lateral interbody fusion (CLIF): a three-dimensional finite-element analysis.
    Chen YL; Lai OJ; Wang Y; Ma WH; Chen QX
    Comput Methods Biomech Biomed Engin; 2020 Jul; 23(9):548-555. PubMed ID: 32223326
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Would an anatomically shaped lumbar interbody cage provide better stability? An in vitro cadaveric biomechanical evaluation.
    Tsitsopoulos PP; Serhan H; Voronov LI; Carandang G; Havey RM; Ghanayem AJ; Patwardhan AG
    J Spinal Disord Tech; 2012 Dec; 25(8):E240-4. PubMed ID: 22362111
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Minimally invasive transforaminal and anterior lumbar interbody fusion surgery at level L5-S1.
    Fidalgo DS; Areias B; Sousa LC; Parente M; Jorge RN; Sousa H; Gonçalves JM
    Comput Methods Biomech Biomed Engin; 2020 Jun; 23(8):384-395. PubMed ID: 32096422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.