These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33048356)

  • 21. Decreased structural defence of an invasive thistle under warming.
    Zhang R; Leshak A; Shea K
    Plant Biol (Stuttg); 2012 Jan; 14(1):249-52. PubMed ID: 21973078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contrasting impacts of climate-driven flowering phenology on changes in alien and native plant species distributions.
    Hulme PE
    New Phytol; 2011 Jan; 189(1):272-81. PubMed ID: 20807339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature-dependent shifts in phenology contribute to the success of exotic species with climate change.
    Wolkovich EM; Davies TJ; Schaefer H; Cleland EE; Cook BI; Travers SE; Willis CG; Davis CC
    Am J Bot; 2013 Jul; 100(7):1407-21. PubMed ID: 23797366
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Life-history responses to temperature and seasonality mediate ectotherm consumer-resource dynamics under climate warming.
    Twardochleb LA; Zarnetske PL; Klausmeier CA
    Proc Biol Sci; 2023 Apr; 290(1997):20222377. PubMed ID: 37122251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.
    Marchin RM; Salk CF; Hoffmann WA; Dunn RR
    Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Species-specific phenological trends in shallow Pampean lakes' (Argentina) zooplankton driven by contemporary climate change in the Southern Hemisphere.
    Diovisalvi N; Odriozola M; Garcia de Souza J; Rojas Molina F; Fontanarrosa MS; Escaray R; Bustingorry J; Sanzano P; Grosman F; Zagarese H
    Glob Chang Biol; 2018 Nov; 24(11):5137-5148. PubMed ID: 30112780
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A natural heating experiment: Phenotypic and genotypic responses of plant phenology to geothermal soil warming.
    Valdés A; Marteinsdóttir B; Ehrlén J
    Glob Chang Biol; 2019 Mar; 25(3):954-962. PubMed ID: 30430704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential Effects of Climate Warming on the Nectar Secretion of Early- and Late-Flowering Mediterranean Plants.
    Takkis K; Tscheulin T; Petanidou T
    Front Plant Sci; 2018; 9():874. PubMed ID: 29997639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strong evidence for changing fish reproductive phenology under climate warming on the Tibetan Plateau.
    Tao J; He D; Kennard MJ; Ding C; Bunn SE; Liu C; Jia Y; Che R; Chen Y
    Glob Chang Biol; 2018 May; 24(5):2093-2104. PubMed ID: 29331066
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Limited alpine climatic warming and modeled phenology advancement for three alpine species in the Northeast United States.
    Kimball KD; Davis ML; Weihrauch DM; Murray GL; Rancourt K
    Am J Bot; 2014 Sep; 101(9):1437-46. PubMed ID: 25253704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Forecasting flowering phenology under climate warming by modelling the regulatory dynamics of flowering-time genes.
    Satake A; Kawagoe T; Saburi Y; Chiba Y; Sakurai G; Kudoh H
    Nat Commun; 2013; 4():2303. PubMed ID: 23941973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Climate change and invasion may synergistically affect native plant reproduction.
    Giejsztowt J; Classen AT; Deslippe JR
    Ecology; 2020 Jan; 101(1):e02913. PubMed ID: 31605624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Warming increases the spread of an invasive thistle.
    Zhang R; Jongejans E; Shea K
    PLoS One; 2011; 6(6):e21725. PubMed ID: 21738779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plants with lengthened phenophases increase their dominance under warming in an alpine plant community.
    Chen J; Luo Y; Chen Y; Felton AJ; Hopping KA; Wang RW; Niu S; Cheng X; Zhang Y; Cao J; Olesen JE; Andersen MN; Jørgensen U
    Sci Total Environ; 2020 Aug; 728():138891. PubMed ID: 32361364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental warming advances phenology of groundlayer plants at the boreal-temperate forest ecotone.
    Rice KE; Montgomery RA; Stefanski A; Rich RL; Reich PB
    Am J Bot; 2018 May; 105(5):851-861. PubMed ID: 29874393
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple temperature effects on phenology and body size in wild butterflies predict a complex response to climate change.
    Davies WJ
    Ecology; 2019 Apr; 100(4):e02612. PubMed ID: 30636278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct impacts of recent climate warming on insect populations.
    Robinet C; Roques A
    Integr Zool; 2010 Jun; 5(2):132-142. PubMed ID: 21392331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-term shifts in the phenology of rare and endemic Rocky Mountain plants.
    Munson SM; Sher AA
    Am J Bot; 2015 Aug; 102(8):1268-76. PubMed ID: 26290550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of experimental warming on the timing of a plant-insect herbivore interaction.
    Kharouba HM; Vellend M; Sarfraz RM; Myers JH
    J Anim Ecol; 2015 May; 84(3):785-796. PubMed ID: 25535854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes.
    Ewing DA; Cobbold CA; Purse BV; Nunn MA; White SM
    J Theor Biol; 2016 Jul; 400():65-79. PubMed ID: 27084359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.