These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33048418)

  • 21. Emergent biogeography of microbial communities in a model ocean.
    Follows MJ; Dutkiewicz S; Grant S; Chisholm SW
    Science; 2007 Mar; 315(5820):1843-6. PubMed ID: 17395828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification.
    Eggers SL; Lewandowska AM; Barcelos E Ramos J; Blanco-Ameijeiras S; Gallo F; Matthiessen B
    Glob Chang Biol; 2014 Mar; 20(3):713-23. PubMed ID: 24115206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of ocean phytoplankton diversity on phosphate uptake.
    Lomas MW; Bonachela JA; Levin SA; Martiny AC
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17540-5. PubMed ID: 25422472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metagenomic Analysis of the Indian Ocean Picocyanobacterial Community: Structure, Potential Function and Evolution.
    Díez B; Nylander JA; Ininbergs K; Dupont CL; Allen AE; Yooseph S; Rusch DB; Bergman B
    PLoS One; 2016; 11(5):e0155757. PubMed ID: 27196065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Response of Prochlorococcus to varying CO2:O2 ratios.
    Bagby SC; Chisholm SW
    ISME J; 2015 Oct; 9(10):2232-45. PubMed ID: 25848872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prochlorococcus: advantages and limits of minimalism.
    Partensky F; Garczarek L
    Ann Rev Mar Sci; 2010; 2():305-31. PubMed ID: 21141667
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dependence of the cyanobacterium Prochlorococcus on hydrogen peroxide scavenging microbes for growth at the ocean's surface.
    Morris JJ; Johnson ZI; Szul MJ; Keller M; Zinser ER
    PLoS One; 2011 Feb; 6(2):e16805. PubMed ID: 21304826
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modelling the vertical distribution of Prochlorococcus and Synechococcus in the North Pacific Subtropical Ocean.
    Rabouille S; Edwards CA; Zehr JP
    Environ Microbiol; 2007 Oct; 9(10):2588-602. PubMed ID: 17803782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The complex effects of ocean acidification on the prominent N
    Hong H; Shen R; Zhang F; Wen Z; Chang S; Lin W; Kranz SA; Luo YW; Kao SJ; Morel FMM; Shi D
    Science; 2017 May; 356(6337):527-531. PubMed ID: 28450383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genomic mosaicism underlies the adaptation of marine Synechococcus ecotypes to distinct oceanic iron niches.
    Ahlgren NA; Belisle BS; Lee MD
    Environ Microbiol; 2020 May; 22(5):1801-1815. PubMed ID: 31840403
    [TBL] [Abstract][Full Text] [Related]  

  • 31.
    Roth-Rosenberg D; Aharonovich D; Luzzatto-Knaan T; Vogts A; Zoccarato L; Eigemann F; Nago N; Grossart HP; Voss M; Sher D
    mBio; 2020 Aug; 11(4):. PubMed ID: 32788385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diversity of Synechococcus and Prochlorococcus populations determined from DNA sequences of the N-regulatory gene ntcA.
    Penno S; Lindell D; Post AF
    Environ Microbiol; 2006 Jul; 8(7):1200-11. PubMed ID: 16817928
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling selective pressures on phytoplankton in the global ocean.
    Bragg JG; Dutkiewicz S; Jahn O; Follows MJ; Chisholm SW
    PLoS One; 2010 Mar; 5(3):e9569. PubMed ID: 20224766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viral Lysis Alters the Optical Properties and Biological Availability of Dissolved Organic Matter Derived from
    Xiao X; Guo W; Li X; Wang C; Chen X; Lin X; Weinbauer MG; Zeng Q; Jiao N; Zhang R
    Appl Environ Microbiol; 2021 Jan; 87(3):. PubMed ID: 33218998
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigating zinc toxicity responses in marine
    Sarker I; Moore LR; Tetu SG
    Microbiology (Reading); 2021 Jun; 167(6):. PubMed ID: 34170816
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle.
    Lea-Smith DJ; Biller SJ; Davey MP; Cotton CA; Perez Sepulveda BM; Turchyn AV; Scanlan DJ; Smith AG; Chisholm SW; Howe CJ
    Proc Natl Acad Sci U S A; 2015 Nov; 112(44):13591-6. PubMed ID: 26438854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of ocean acidification on iron availability to marine phytoplankton.
    Shi D; Xu Y; Hopkinson BM; Morel FM
    Science; 2010 Feb; 327(5966):676-9. PubMed ID: 20075213
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Light-stimulated bacterial production and amino acid assimilation by cyanobacteria and other microbes in the North Atlantic ocean.
    Michelou VK; Cottrell MT; Kirchman DL
    Appl Environ Microbiol; 2007 Sep; 73(17):5539-46. PubMed ID: 17630296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mixotrophic metabolism by natural communities of unicellular cyanobacteria in the western tropical South Pacific Ocean.
    Duhamel S; Van Wambeke F; Lefevre D; Benavides M; Bonnet S
    Environ Microbiol; 2018 Aug; 20(8):2743-2756. PubMed ID: 29573372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High abundances of cyanomyoviruses in marine ecosystems demonstrate ecological relevance.
    Matteson AR; Rowe JM; Ponsero AJ; Pimentel TM; Boyd PW; Wilhelm SW
    FEMS Microbiol Ecol; 2013 May; 84(2):223-34. PubMed ID: 23240688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.