These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Inertia-Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation. Kim U; Oh B; Ahn J; Lee S; Cho Y Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808206 [TBL] [Abstract][Full Text] [Related]
8. A Multilayer Polymer-Film Inertial Microfluidic Device for High-Throughput Cell Concentration. Xiang N; Zhang R; Han Y; Ni Z Anal Chem; 2019 Apr; 91(8):5461-5468. PubMed ID: 30920789 [TBL] [Abstract][Full Text] [Related]
9. Elastic-inertial separation of microparticle in a gradually contracted microchannel. Tian ZZ; Gan CS; Fan LL; Wang JC; Zhao L Electrophoresis; 2022 Nov; 43(21-22):2217-2226. PubMed ID: 36084168 [TBL] [Abstract][Full Text] [Related]
10. Low-cost multi-core inertial microfluidic centrifuge for high-throughput cell concentration. Xiang N; Li Q; Shi Z; Zhou C; Jiang F; Han Y; Ni Z Electrophoresis; 2020 Jun; 41(10-11):875-882. PubMed ID: 31705675 [TBL] [Abstract][Full Text] [Related]
11. High-throughput particle separation and concentration using spiral inertial filtration. Burke JM; Zubajlo RE; Smela E; White IM Biomicrofluidics; 2014 Mar; 8(2):024105. PubMed ID: 24738012 [TBL] [Abstract][Full Text] [Related]
12. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry. Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295 [TBL] [Abstract][Full Text] [Related]
13. Inertial microfluidics for continuous particle separation in spiral microchannels. Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752 [TBL] [Abstract][Full Text] [Related]
14. Inertial Separation of Particles Assisted by Symmetrical Sheath Flows in a Straight Microchannel. Zhang T; Inglis DW; Ngo L; Wang Y; Hosokawa Y; Yalikun Y; Li M Anal Chem; 2023 Jul; 95(29):11132-11140. PubMed ID: 37455389 [TBL] [Abstract][Full Text] [Related]
15. High-Throughput, Label-Free Isolation of White Blood Cells from Whole Blood Using Parallel Spiral Microchannels with U-Shaped Cross-Section. Mehran A; Rostami P; Saidi MS; Firoozabadi B; Kashaninejad N Biosensors (Basel); 2021 Oct; 11(11):. PubMed ID: 34821622 [TBL] [Abstract][Full Text] [Related]
16. A high-throughput microfluidic device based on controlled incremental filtration to enable centrifugation-free, low extracorporeal volume leukapheresis. Lezzar DL; Lam FW; Huerta R; Mukhamedshin A; Lu M; Shevkoplyas SS Sci Rep; 2022 Aug; 12(1):13798. PubMed ID: 35963876 [TBL] [Abstract][Full Text] [Related]
17. PDMS-Parylene Hybrid, Flexible Microfluidics for Real-Time Modulation of 3D Helical Inertial Microfluidics. Jung BJ; Kim J; Kim JA; Jang H; Seo S; Lee W Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424188 [TBL] [Abstract][Full Text] [Related]
18. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress. Lee MG; Shin JH; Bae CY; Choi S; Park JK Anal Chem; 2013 Jul; 85(13):6213-8. PubMed ID: 23724953 [TBL] [Abstract][Full Text] [Related]
19. High-throughput concentration of rare malignant tumor cells from large-volume effusions by multistage inertial microfluidics. Xiang N; Ni Z Lab Chip; 2022 Feb; 22(4):757-767. PubMed ID: 35050294 [TBL] [Abstract][Full Text] [Related]
20. High-Throughput Particle Concentration Using Complex Cross-Section Microchannels. Mihandoust A; Razavi Bazaz S; Maleki-Jirsaraei N; Alizadeh M; A Taylor R; Ebrahimi Warkiani M Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32331275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]