These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33049067)

  • 1. Ultrahigh throughput beehive-like device for blood plasma separation.
    Jiang F; Xiang N; Ni Z
    Electrophoresis; 2020 Dec; 41(24):2136-2143. PubMed ID: 33049067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation.
    Rafeie M; Zhang J; Asadnia M; Li W; Warkiani ME
    Lab Chip; 2016 Aug; 16(15):2791-802. PubMed ID: 27377196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.
    Xiang N; Ni Z
    Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Inertial Microfluidics with Cross-Flow Filtration for High-Fold and High-Throughput Passive Volume Reduction.
    Xiang N; Li Q; Ni Z
    Anal Chem; 2020 May; 92(9):6770-6776. PubMed ID: 32297510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A polymer-film inertial microfluidic sorter fabricated by jigsaw puzzle method for precise size-based cell separation.
    Zhu Z; Wu D; Li S; Han Y; Xiang N; Wang C; Ni Z
    Anal Chim Acta; 2021 Jan; 1143():306-314. PubMed ID: 33384126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-cost polymer-film spiral inertial microfluidic device for label-free separation of malignant tumor cells.
    Wang C; Chen Y; Gu X; Zhang X; Gao C; Dong L; Zheng S; Feng S; Xiang N
    Electrophoresis; 2022 Feb; 43(3):464-471. PubMed ID: 34611912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertia-Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation.
    Kim U; Oh B; Ahn J; Lee S; Cho Y
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Multilayer Polymer-Film Inertial Microfluidic Device for High-Throughput Cell Concentration.
    Xiang N; Zhang R; Han Y; Ni Z
    Anal Chem; 2019 Apr; 91(8):5461-5468. PubMed ID: 30920789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic-inertial separation of microparticle in a gradually contracted microchannel.
    Tian ZZ; Gan CS; Fan LL; Wang JC; Zhao L
    Electrophoresis; 2022 Nov; 43(21-22):2217-2226. PubMed ID: 36084168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-cost multi-core inertial microfluidic centrifuge for high-throughput cell concentration.
    Xiang N; Li Q; Shi Z; Zhou C; Jiang F; Han Y; Ni Z
    Electrophoresis; 2020 Jun; 41(10-11):875-882. PubMed ID: 31705675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput particle separation and concentration using spiral inertial filtration.
    Burke JM; Zubajlo RE; Smela E; White IM
    Biomicrofluidics; 2014 Mar; 8(2):024105. PubMed ID: 24738012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry.
    Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M
    Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inertial Separation of Particles Assisted by Symmetrical Sheath Flows in a Straight Microchannel.
    Zhang T; Inglis DW; Ngo L; Wang Y; Hosokawa Y; Yalikun Y; Li M
    Anal Chem; 2023 Jul; 95(29):11132-11140. PubMed ID: 37455389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput, Label-Free Isolation of White Blood Cells from Whole Blood Using Parallel Spiral Microchannels with U-Shaped Cross-Section.
    Mehran A; Rostami P; Saidi MS; Firoozabadi B; Kashaninejad N
    Biosensors (Basel); 2021 Oct; 11(11):. PubMed ID: 34821622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-throughput microfluidic device based on controlled incremental filtration to enable centrifugation-free, low extracorporeal volume leukapheresis.
    Lezzar DL; Lam FW; Huerta R; Mukhamedshin A; Lu M; Shevkoplyas SS
    Sci Rep; 2022 Aug; 12(1):13798. PubMed ID: 35963876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PDMS-Parylene Hybrid, Flexible Microfluidics for Real-Time Modulation of 3D Helical Inertial Microfluidics.
    Jung BJ; Kim J; Kim JA; Jang H; Seo S; Lee W
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress.
    Lee MG; Shin JH; Bae CY; Choi S; Park JK
    Anal Chem; 2013 Jul; 85(13):6213-8. PubMed ID: 23724953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput concentration of rare malignant tumor cells from large-volume effusions by multistage inertial microfluidics.
    Xiang N; Ni Z
    Lab Chip; 2022 Feb; 22(4):757-767. PubMed ID: 35050294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput Particle Concentration Using Complex Cross-Section Microchannels.
    Mihandoust A; Razavi Bazaz S; Maleki-Jirsaraei N; Alizadeh M; A Taylor R; Ebrahimi Warkiani M
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32331275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.