These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33049134)

  • 21. Building Polyoxometalate "Nano-Walls" on 3D Porous Carbon Paper: A Solar Steam Generation System for Water Purification.
    De Q; Xu X
    Chemistry; 2020 Jun; 26(35):7923-7929. PubMed ID: 32196788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Copper nanoparticles with near-unity, omnidirectional, and broadband optical absorption for highly efficient solar steam generation.
    Lin Y; Chen Z; Fang L; Meng M; Liu Z; Di Y; Cai W; Huang S; Gan Z
    Nanotechnology; 2019 Jan; 30(1):015402. PubMed ID: 30362462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.
    Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J
    Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D Interconnected Gyroid Au-CuS Materials for Efficient Solar Steam Generation.
    Sun P; Wang W; Zhang W; Zhang S; Gu J; Yang L; Pantelić D; Jelenković B; Zhang D
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34837-34847. PubMed ID: 32644768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-Dimensional Wood-Inspired Bilayer Membrane Device Containing Microchannels for Highly Efficient Solar Steam Generation.
    Wang L; Liu C; Wang H; Xu Y; Ma S; Zhuang Y; Xu W; Cui W; Yang H
    ACS Appl Mater Interfaces; 2020 May; 12(21):24328-24338. PubMed ID: 32379963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination.
    Zhang L; Xing J; Wen X; Chai J; Wang S; Xiong Q
    Nanoscale; 2017 Sep; 9(35):12843-12849. PubMed ID: 28832043
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Super absorption of solar energy using a plasmonic nanoparticle based CdTe solar cell.
    Rehman Q; Khan AD; Khan AD; Noman M; Ali H; Rauf A; Ahmad MS
    RSC Adv; 2019 Oct; 9(59):34207-34213. PubMed ID: 35530006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating.
    Yan J; Liu P; Ma C; Lin Z; Yang G
    Nanoscale; 2016 Apr; 8(16):8826-38. PubMed ID: 27067248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion.
    Wu D; Liu C; Liu Y; Xu Z; Yu Z; Yu L; Chen L; Ma R; Zhang J; Ye H
    RSC Adv; 2018 Jun; 8(38):21054-21064. PubMed ID: 35539953
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation.
    Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI
    Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultra-Broadband Refractory All-Metal Metamaterial Selective Absorber for Solar Thermal Energy Conversion.
    Qi B; Chen W; Niu T; Mei Z
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmon-Enhanced Light Absorption in (p-i-n) Junction GaAs Nanowire Solar Cells: An FDTD Simulation Method Study.
    Dawi EA; Karar AA; Mustafa E; Nur O
    Nanoscale Res Lett; 2021 Sep; 16(1):149. PubMed ID: 34542730
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-Supporting Nanoporous Copper Film with High Porosity and Broadband Light Absorption for Efficient Solar Steam Generation.
    Yu B; Wang Y; Zhang Y; Zhang Z
    Nanomicro Lett; 2023 Apr; 15(1):94. PubMed ID: 37037910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Submerged nanoporous anodized alumina structure for solar-powered desalination.
    Kaviti AK; Akkala SR; Jeremias M; Pohorely M; Sikarwar VS
    Environ Sci Pollut Res Int; 2024 Jun; 31(30):43186-43197. PubMed ID: 38890254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cu
    Wang Z; Yu K; Gong S; Mao H; Huang R; Zhu Z
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16246-16258. PubMed ID: 33784061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation.
    Bae K; Kang G; Cho SK; Park W; Kim K; Padilla WJ
    Nat Commun; 2015 Dec; 6():10103. PubMed ID: 26657535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Scalable Nickel-Cellulose Hybrid Metamaterial with Broadband Light Absorption for Efficient Solar Distillation.
    Yuan Y; Dong C; Gu J; Liu Q; Xu J; Zhou C; Song G; Chen W; Yao L; Zhang D
    Adv Mater; 2020 Apr; 32(17):e1907975. PubMed ID: 32159267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synergistic plasmonic effects of metal nanoparticle-decorated PEGylated graphene oxides in polymer solar cells.
    Chuang MK; Chen FC
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7397-405. PubMed ID: 25786137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nature-Inspired, 3D Origami Solar Steam Generator toward Near Full Utilization of Solar Energy.
    Hong S; Shi Y; Li R; Zhang C; Jin Y; Wang P
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28517-28524. PubMed ID: 30109921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robust and Low-Cost Flame-Treated Wood for High-Performance Solar Steam Generation.
    Xue G; Liu K; Chen Q; Yang P; Li J; Ding T; Duan J; Qi B; Zhou J
    ACS Appl Mater Interfaces; 2017 May; 9(17):15052-15057. PubMed ID: 28402107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.