BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33049278)

  • 21. Increased energy metabolism rescues glia-induced pathology in a Drosophila model of Huntington's disease.
    Besson MT; Dupont P; Fridell YW; Liévens JC
    Hum Mol Genet; 2010 Sep; 19(17):3372-82. PubMed ID: 20566711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Huntington's Disease and Mitochondria.
    Jodeiri Farshbaf M; Ghaedi K
    Neurotox Res; 2017 Oct; 32(3):518-529. PubMed ID: 28639241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developmental malformations in Huntington disease: neuropathologic evidence of focal neuronal migration defects in a subset of adult brains.
    Hickman RA; Faust PL; Rosenblum MK; Marder K; Mehler MF; Vonsattel JP
    Acta Neuropathol; 2021 Mar; 141(3):399-413. PubMed ID: 33517535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington's disease.
    Yu ZX; Li SH; Evans J; Pillarisetti A; Li H; Li XJ
    J Neurosci; 2003 Mar; 23(6):2193-202. PubMed ID: 12657678
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of Phosphorylated Tau and Glucose Synthase Kinase 3 Beta in Huntington's Disease Progression.
    Sawant N; Reddy PH
    J Alzheimers Dis; 2019; 72(s1):S177-S191. PubMed ID: 31744007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduced Expression of Foxp1 as a Contributing Factor in Huntington's Disease.
    Louis Sam Titus ASC; Yusuff T; Cassar M; Thomas E; Kretzschmar D; D'Mello SR
    J Neurosci; 2017 Jul; 37(27):6575-6587. PubMed ID: 28550168
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased Steady-State Mutant Huntingtin mRNA in Huntington's Disease Brain.
    Liu W; Chaurette J; Pfister EL; Kennington LA; Chase KO; Bullock J; Vonsattel JP; Faull RL; Macdonald D; DiFiglia M; Zamore PD; Aronin N
    J Huntingtons Dis; 2013; 2(4):491-500. PubMed ID: 25062733
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brain urea increase is an early Huntington's disease pathogenic event observed in a prodromal transgenic sheep model and HD cases.
    Handley RR; Reid SJ; Brauning R; Maclean P; Mears ER; Fourie I; Patassini S; Cooper GJS; Rudiger SR; McLaughlan CJ; Verma PJ; Gusella JF; MacDonald ME; Waldvogel HJ; Bawden CS; Faull RLM; Snell RG
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):E11293-E11302. PubMed ID: 29229845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms for neuronal cell death and dysfunction in Huntington's disease: pathological cross-talk between the nucleus and the mitochondria?
    Sawa A
    J Mol Med (Berl); 2001 Jul; 79(7):375-81. PubMed ID: 11466559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Huntington's disease gene: regional and cellular expression in brain of normal and affected individuals.
    Landwehrmeyer GB; McNeil SM; Dure LS; Ge P; Aizawa H; Huang Q; Ambrose CM; Duyao MP; Bird ED; Bonilla E
    Ann Neurol; 1995 Feb; 37(2):218-30. PubMed ID: 7847863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple clinical features of Huntington's disease correlate with mutant HTT gene CAG repeat lengths and neurodegeneration.
    Podvin S; Reardon HT; Yin K; Mosier C; Hook V
    J Neurol; 2019 Mar; 266(3):551-564. PubMed ID: 29956026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The early cellular pathology of Huntington's disease.
    Li XJ
    Mol Neurobiol; 1999; 20(2-3):111-24. PubMed ID: 10966117
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrative hypothesis for Huntington's disease: a brief review of experimental evidence.
    Perez-De La Cruz V; Santamaria A
    Physiol Res; 2007; 56(5):513-526. PubMed ID: 17184144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A critical role of astrocyte-mediated nuclear factor-κB-dependent inflammation in Huntington's disease.
    Hsiao HY; Chen YC; Chen HM; Tu PH; Chern Y
    Hum Mol Genet; 2013 May; 22(9):1826-42. PubMed ID: 23372043
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic Screen in Adult Drosophila Reveals That dCBP Depletion in Glial Cells Mitigates Huntington Disease Pathology through a Foxo-Dependent Pathway.
    Martin E; Heidari R; Monnier V; Tricoire H
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33918672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural transplants in patients with Huntington's disease undergo disease-like neuronal degeneration.
    Cicchetti F; Saporta S; Hauser RA; Parent M; Saint-Pierre M; Sanberg PR; Li XJ; Parker JR; Chu Y; Mufson EJ; Kordower JH; Freeman TB
    Proc Natl Acad Sci U S A; 2009 Jul; 106(30):12483-8. PubMed ID: 19620721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of neuronal cell death in Huntington's disease.
    Sawa A; Tomoda T; Bae BI
    Cytogenet Genome Res; 2003; 100(1-4):287-95. PubMed ID: 14526190
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural stem cells derived from the developing forebrain of YAC128 mice exhibit pathological features of Huntington's disease.
    Li E; Park HR; Hong CP; Kim Y; Choi J; Lee S; Park HJ; Lee B; Kim TA; Kim SJ; Kim HS; Song J
    Cell Prolif; 2020 Oct; 53(10):e12893. PubMed ID: 32865873
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential vulnerability of neurons in Huntington's disease: the role of cell type-specific features.
    Han I; You Y; Kordower JH; Brady ST; Morfini GA
    J Neurochem; 2010 Jun; 113(5):1073-91. PubMed ID: 20236390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Manifestation of Huntington's disease pathology in human induced pluripotent stem cell-derived neurons.
    Nekrasov ED; Vigont VA; Klyushnikov SA; Lebedeva OS; Vassina EM; Bogomazova AN; Chestkov IV; Semashko TA; Kiseleva E; Suldina LA; Bobrovsky PA; Zimina OA; Ryazantseva MA; Skopin AY; Illarioshkin SN; Kaznacheyeva EV; Lagarkova MA; Kiselev SL
    Mol Neurodegener; 2016 Apr; 11():27. PubMed ID: 27080129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.