BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 33049579)

  • 21. FYU-Net: A Cascading Segmentation Network for Kidney Tumor Medical Imaging.
    Feng H; Kou X; Tang Z; Li L
    Comput Math Methods Med; 2022; 2022():4792532. PubMed ID: 36303948
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.
    Zhou X; Takayama R; Wang S; Hara T; Fujita H
    Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.
    Zhang Z; Zhao T; Gay H; Zhang W; Sun B
    Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of Semiautomatic and Deep Learning-Based Fully Automatic Segmentation Methods on [
    Constantino CS; Leocádio S; Oliveira FPM; Silva M; Oliveira C; Castanheira JC; Silva Â; Vaz S; Teixeira R; Neves M; Lúcio P; João C; Costa DC
    J Digit Imaging; 2023 Aug; 36(4):1864-1876. PubMed ID: 37059891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Dataset Size and Medical Image Modality on Convolutional Neural Network Model Performance for Automated Segmentation: A CT and MR Renal Tumor Imaging Study.
    Gottlich HC; Gregory AV; Sharma V; Khanna A; Moustafa AU; Lohse CM; Potretzke TA; Korfiatis P; Potretzke AM; Denic A; Rule AD; Takahashi N; Erickson BJ; Leibovich BC; Kline TL
    J Digit Imaging; 2023 Aug; 36(4):1770-1781. PubMed ID: 36932251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Liver tumor segmentation based on 3D convolutional neural network with dual scale.
    Meng L; Tian Y; Bu S
    J Appl Clin Med Phys; 2020 Jan; 21(1):144-157. PubMed ID: 31793212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation.
    Lee SB; Hong Y; Cho YJ; Jeong D; Lee J; Yoon SH; Lee S; Choi YH; Cheon JE
    Korean J Radiol; 2023 Apr; 24(4):294-304. PubMed ID: 36907592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep Semantic Segmentation of Kidney and Space-Occupying Lesion Area Based on SCNN and ResNet Models Combined with SIFT-Flow Algorithm.
    Xia KJ; Yin HS; Zhang YD
    J Med Syst; 2018 Nov; 43(1):2. PubMed ID: 30456668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Outcomes of Artificial Intelligence Volumetric Assessment of Kidneys and Renal Tumors for Preoperative Assessment of Nephron-Sparing Interventions.
    Houshyar R; Glavis-Bloom J; Bui TL; Chahine C; Bardis MD; Ushinsky A; Liu H; Bhatter P; Lebby E; Fujimoto D; Grant W; Tran-Harding K; Landman J; Chow DS; Chang PD
    J Endourol; 2021 Sep; 35(9):1411-1418. PubMed ID: 33847156
    [No Abstract]   [Full Text] [Related]  

  • 31. Automatic Segmentation of Bone Selective MR Images for Visualization and Craniometry of the Cranial Vault.
    Zimmerman CE; Khandelwal P; Xie L; Lee H; Song HK; Yushkevich PA; Vossough A; Bartlett SP; Wehrli FW
    Acad Radiol; 2022 Mar; 29 Suppl 3(Suppl 3):S98-S106. PubMed ID: 33903011
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images.
    Wang J; Cheng Y; Guo C; Wang Y; Tamura S
    Int J Comput Assist Radiol Surg; 2016 May; 11(5):817-26. PubMed ID: 26646416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Robust and efficient abdominal CT segmentation using shape constrained multi-scale attention network.
    Tong N; Xu Y; Zhang J; Gou S; Li M
    Phys Med; 2023 Jun; 110():102595. PubMed ID: 37178624
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks.
    Sandfort V; Yan K; Pickhardt PJ; Summers RM
    Sci Rep; 2019 Nov; 9(1):16884. PubMed ID: 31729403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of human and automatic segmentations of kidneys from CT images.
    Rao M; Stough J; Chi YY; Muller K; Tracton G; Pizer SM; Chaney EL
    Int J Radiat Oncol Biol Phys; 2005 Mar; 61(3):954-60. PubMed ID: 15708280
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Head and neck tumor segmentation in PET/CT: The HECKTOR challenge.
    Oreiller V; Andrearczyk V; Jreige M; Boughdad S; Elhalawani H; Castelli J; Vallières M; Zhu S; Xie J; Peng Y; Iantsen A; Hatt M; Yuan Y; Ma J; Yang X; Rao C; Pai S; Ghimire K; Feng X; Naser MA; Fuller CD; Yousefirizi F; Rahmim A; Chen H; Wang L; Prior JO; Depeursinge A
    Med Image Anal; 2022 Apr; 77():102336. PubMed ID: 35016077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PA-ResSeg: A phase attention residual network for liver tumor segmentation from multiphase CT images.
    Xu Y; Cai M; Lin L; Zhang Y; Hu H; Peng Z; Zhang Q; Chen Q; Mao X; Iwamoto Y; Han XH; Chen YW; Tong R
    Med Phys; 2021 Jul; 48(7):3752-3766. PubMed ID: 33950526
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Semantic-Aware Contrastive Learning for Multi-Object Medical Image Segmentation.
    Lee HH; Tang Y; Yang Q; Yu X; Cai LY; Remedios LW; Bao S; Landman BA; Huo Y
    IEEE J Biomed Health Inform; 2023 Sep; 27(9):4444-4453. PubMed ID: 37310834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polycystic liver: automatic segmentation using deep learning on CT is faster and as accurate compared to manual segmentation.
    Cayot B; Milot L; Nempont O; Vlachomitrou AS; Langlois-Jacques C; Dumortier J; Boillot O; Arnaud K; Barten TRM; Drenth JPH; Valette PJ
    Eur Radiol; 2022 Jul; 32(7):4780-4790. PubMed ID: 35142898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.