These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 33049611)
1. The greenhouse gas emission effects of rewetting drained peatlands and growing wetland plants for biogas fuel production. Martens M; Karlsson NPE; Ehde PM; Mattsson M; Weisner SEB J Environ Manage; 2021 Jan; 277():111391. PubMed ID: 33049611 [TBL] [Abstract][Full Text] [Related]
2. Multiyear greenhouse gas balances at a rewetted temperate peatland. Wilson D; Farrell CA; Fallon D; Moser G; Müller C; Renou-Wilson F Glob Chang Biol; 2016 Dec; 22(12):4080-4095. PubMed ID: 27099183 [TBL] [Abstract][Full Text] [Related]
3. Paludiculture as paludifuture on Dutch peatlands: An environmental and economic analysis of Typha cultivation and insulation production. de Jong M; van Hal O; Pijlman J; van Eekeren N; Junginger M Sci Total Environ; 2021 Oct; 792():148161. PubMed ID: 34465063 [TBL] [Abstract][Full Text] [Related]
4. In-situ measurement of greenhouse gas emissions from a coastal estuarine wetland using a novel continuous monitoring technology: Comparison of indigenous and exotic plant species. Hsieh SH; Yuan CS; Ie IR; Yang L; Lin HJ; Hsueh ML J Environ Manage; 2021 Mar; 281():111905. PubMed ID: 33388713 [TBL] [Abstract][Full Text] [Related]
5. Conversion of coastal wetlands, riparian wetlands, and peatlands increases greenhouse gas emissions: A global meta-analysis. Tan L; Ge Z; Zhou X; Li S; Li X; Tang J Glob Chang Biol; 2020 Mar; 26(3):1638-1653. PubMed ID: 31755630 [TBL] [Abstract][Full Text] [Related]
6. Soil greenhouse gas emissions from drained and rewetted agricultural bare peat mesocosms are linked to geochemistry. Nielsen CK; Elsgaard L; Jørgensen U; Lærke PE Sci Total Environ; 2023 Oct; 896():165083. PubMed ID: 37391135 [TBL] [Abstract][Full Text] [Related]
7. Full-cycle greenhouse gas balance of a Sphagnum paludiculture site on former bog grassland in Germany. Daun C; Huth V; Gaudig G; Günther A; Krebs M; Jurasinski G Sci Total Environ; 2023 Jun; 877():162943. PubMed ID: 36934933 [TBL] [Abstract][Full Text] [Related]
9. Topsoil removal reduced in-situ methane emissions in a temperate rewetted bog grassland by a hundredfold. Huth V; Günther A; Bartel A; Hofer B; Jacobs O; Jantz N; Meister M; Rosinski E; Urich T; Weil M; Zak D; Jurasinski G Sci Total Environ; 2020 Jun; 721():137763. PubMed ID: 32172119 [TBL] [Abstract][Full Text] [Related]
10. The unexpected long period of elevated CH Antonijević D; Hoffmann M; Prochnow A; Krabbe K; Weituschat M; Couwenberg J; Ehlert S; Zak D; Augustin J Glob Chang Biol; 2023 Jul; 29(13):3678-3691. PubMed ID: 37029755 [TBL] [Abstract][Full Text] [Related]
11. Seasonal and diurnal variations of greenhouse gas emissions from a saline mangrove constructed wetland by using an in situ continuous GHG monitoring system. Tsai CP; Huang CM; Yuan CS; Yang L Environ Sci Pollut Res Int; 2020 May; 27(13):15824-15834. PubMed ID: 32095962 [TBL] [Abstract][Full Text] [Related]
12. Nutrient removal potential and biomass production by Phragmites australis and Typha latifolia on European rewetted peat and mineral soils. Geurts JJM; Oehmke C; Lambertini C; Eller F; Sorrell BK; Mandiola SR; Grootjans AP; Brix H; Wichtmann W; Lamers LPM; Fritz C Sci Total Environ; 2020 Dec; 747():141102. PubMed ID: 32795788 [TBL] [Abstract][Full Text] [Related]
13. Peatland restoration pathways to mitigate greenhouse gas emissions and retain peat carbon. Mander Ü; Espenberg M; Melling L; Kull A Biogeochemistry; 2024; 167(4):523-543. PubMed ID: 38707516 [TBL] [Abstract][Full Text] [Related]
14. Assessing nutrient responses and biomass quality for selection of appropriate paludiculture crops. Ren L; Eller F; Lambertini C; Guo WY; Brix H; Sorrell BK Sci Total Environ; 2019 May; 664():1150-1161. PubMed ID: 30901787 [TBL] [Abstract][Full Text] [Related]
15. Effects and mechanisms of land-types conversion on greenhouse gas emissions in the Yellow River floodplain wetland. Lin Q; Wang S; Li Y; Riaz L; Yu F; Yang Q; Han S; Ma J Sci Total Environ; 2022 Mar; 813():152406. PubMed ID: 34921878 [TBL] [Abstract][Full Text] [Related]
16. Responsible agriculture must adapt to the wetland character of mid-latitude peatlands. Freeman BWJ; Evans CD; Musarika S; Morrison R; Newman TR; Page SE; Wiggs GFS; Bell NGA; Styles D; Wen Y; Chadwick DR; Jones DL Glob Chang Biol; 2022 Jun; 28(12):3795-3811. PubMed ID: 35243734 [TBL] [Abstract][Full Text] [Related]
17. Greenhouse gas emissions from intact riparian wetland soil columns continuously loaded with nitrate solution: a laboratory microcosm study. Mwagona PC; Yao Y; Yuanqi S; Yu H Environ Sci Pollut Res Int; 2019 Nov; 26(32):33702-33714. PubMed ID: 31595410 [TBL] [Abstract][Full Text] [Related]
18. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R; Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699 [TBL] [Abstract][Full Text] [Related]
19. Comprehensive assessment of nitrous oxide emissions and mitigation potentials across European peatlands. Lin F; Zuo H; Ma X; Ma L Environ Pollut; 2022 May; 301():119041. PubMed ID: 35217134 [TBL] [Abstract][Full Text] [Related]
20. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. Knox SH; Sturtevant C; Matthes JH; Koteen L; Verfaillie J; Baldocchi D Glob Chang Biol; 2015 Feb; 21(2):750-65. PubMed ID: 25229180 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]