These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33049724)

  • 1. Thermal interface materials with graphene fillers: review of the state of the art and outlook for future applications.
    Lewis JS; Perrier T; Barani Z; Kargar F; Balandin AA
    Nanotechnology; 2021 Apr; 32(14):142003. PubMed ID: 33049724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Percolation Threshold and Thermal Properties of Composites with High Loading of Graphene and Boron Nitride Fillers.
    Kargar F; Barani Z; Salgado R; Debnath B; Lewis JS; Aytan E; Lake RK; Balandin AA
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37555-37565. PubMed ID: 30299919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review of Polymer Composites Based on Carbon Fillers for Thermal Management Applications: Design, Preparation, and Properties.
    Kwon YJ; Park JB; Jeon YP; Hong JY; Park HS; Lee JU
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33923627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specifics of Thermal Transport in Graphene Composites: Effect of Lateral Dimensions of Graphene Fillers.
    Sudhindra S; Rashvand F; Wright D; Barani Z; Drozdov AD; Baraghani S; Backes C; Kargar F; Balandin AA
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):53073-53082. PubMed ID: 34705408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene-Based Hybrid Composites for Efficient Thermal Management of Electronic Devices.
    Shtein M; Nadiv R; Buzaglo M; Regev O
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23725-30. PubMed ID: 26445279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine-Mediated Graphene Bridging Hexagonal Boron Nitride for Large-Scale Composite Films with Enhanced Thermal Conductivity and Electrical Insulation.
    Li S; Shen Y; Jia X; Xu M; Zong R; Liu G; Liu B; Huai X
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Combination of Boron Nitride Nanotubes and Cellulose Nanofibers for the Preparation of a Nanocomposite with High Thermal Conductivity.
    Zeng X; Sun J; Yao Y; Sun R; Xu JB; Wong CP
    ACS Nano; 2017 May; 11(5):5167-5178. PubMed ID: 28402626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Paper-Like Inorganic Thermal Interface Material Composed of Hierarchically Structured Graphene/Silicon Carbide Nanorods.
    Dai W; Lv L; Lu J; Hou H; Yan Q; Alam FE; Li Y; Zeng X; Yu J; Wei Q; Xu X; Wu J; Jiang N; Du S; Sun R; Xu J; Wong CP; Lin CT
    ACS Nano; 2019 Feb; 13(2):1547-1554. PubMed ID: 30726676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal Conductivity of Graphene-Polymer Composites: Mechanisms, Properties, and Applications.
    Li A; Zhang C; Zhang YF
    Polymers (Basel); 2017 Sep; 9(9):. PubMed ID: 30965752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryogenic characteristics of graphene composites-evolution from thermal conductors to thermal insulators.
    Nataj ZE; Xu Y; Wright D; Brown JO; Garg J; Chen X; Kargar F; Balandin AA
    Nat Commun; 2023 Jun; 14(1):3190. PubMed ID: 37268627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity.
    Wang F; Zeng X; Yao Y; Sun R; Xu J; Wong CP
    Sci Rep; 2016 Jan; 6():19394. PubMed ID: 26783258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the in-plane aspect ratio of a graphene filler on anisotropic heat conduction in paraffin/graphene composites.
    Matsubara H; Ohara T
    Phys Chem Chem Phys; 2021 Jun; 23(21):12082-12092. PubMed ID: 34018514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superior Thermal Conductivity of Graphene Film/Cu-Zr Alloy Composites for Thermal Management Applications.
    Chang G; Wang L; Zhang Y; Li X; Chen K; Kan D; Zhang W; Zhang S; Dong L; Li L; Bai X; Zhang H; Huo W
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):56156-56168. PubMed ID: 36508197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double-Wall Nanotubes and Graphene Nanoplatelets for Hybrid Conductive Adhesives with Enhanced Thermal and Electrical Conductivity.
    Messina E; Leone N; Foti A; Di Marco G; Riccucci C; Di Carlo G; Di Maggio F; Cassata A; Gargano L; D'Andrea C; Fazio B; Maragò OM; Robba B; Vasi C; Ingo GM; Gucciardi PG
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23244-59. PubMed ID: 27538099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fillers and methods to improve the effective (out-plane) thermal conductivity of polymeric thermal interface materials - A review.
    Mumtaz N; Li Y; Artiaga R; Farooq Z; Mumtaz A; Guo Q; Nisa FU
    Heliyon; 2024 Feb; 10(3):e25381. PubMed ID: 38352797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicone-Based Thermally Conductive Gel Fabrication via Hybridization of Low-Melting-Point Alloy-Hexagonal Boron Nitride-Graphene Oxide.
    Chen P; Ge X; Zhang Z; Yin S; Liang W; Ge J
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-Level Thermally Conductive yet Soft Graphene Thermal Interface Materials.
    Dai W; Ma T; Yan Q; Gao J; Tan X; Lv L; Hou H; Wei Q; Yu J; Wu J; Yao Y; Du S; Sun R; Jiang N; Wang Y; Kong J; Wong C; Maruyama S; Lin CT
    ACS Nano; 2019 Oct; 13(10):11561-11571. PubMed ID: 31550125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Thermally Conductive and Superior Electrical Insulation Polymer Composites via In Situ Thermal Expansion of Expanded Graphite and In Situ Oxidation of Aluminum Nanoflakes.
    Yang S; Wang Q; Wen B
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1511-1523. PubMed ID: 33347278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the Heat Transfer Efficiency in Graphene-Epoxy Nanocomposites Using a Magnesium Oxide-Graphene Hybrid Structure.
    Du FP; Yang W; Zhang F; Tang CY; Liu SP; Yin L; Law WC
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14397-403. PubMed ID: 26075677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal interface material with graphene enhanced sintered copper for high temperature power electronics.
    Deng S; Zhang X; Xiao GD; Zhang K; He X; Xin S; Liu X; Zhong A; Chai Y
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33910177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.