BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33049727)

  • 1. Adsorption kinetics feature extraction from breathprint obtained by graphene based sensors for diabetes diagnosis.
    Kalidoss R; Umapathy S; Kothalam R; Sakthivelu U
    J Breath Res; 2020 Oct; 15(1):016005. PubMed ID: 33049727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of online and offline measurement of exhaled breath for diabetes pre-screening by graphene-based sensor; from powder processing to clinical monitoring prototype.
    Kalidoss R; Umapathy S
    J Breath Res; 2019 May; 13(3):036008. PubMed ID: 30794992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-layer graphene as a selective detector for future lung cancer biosensing platforms.
    Kovalska E; Lesongeur P; Hogan BT; Baldycheva A
    Nanoscale; 2019 Jan; 11(5):2476-2483. PubMed ID: 30672548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advancements and Future Prospects on E-Nose Sensors Technology and Machine Learning Approaches for Non-Invasive Diabetes Diagnosis: A Review.
    Lekha S; M S
    IEEE Rev Biomed Eng; 2021; 14():127-138. PubMed ID: 32396102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast responding exhaled-breath sensors using WO3 hemitubes functionalized by graphene-based electronic sensitizers for diagnosis of diseases.
    Choi SJ; Fuchs F; Demadrille R; Grévin B; Jang BH; Lee SJ; Lee JH; Tuller HL; Kim ID
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9061-70. PubMed ID: 24844154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of the algorithms used in exhaled breath analysis for the detection of diabetes.
    Paleczek A; Rydosz A
    J Breath Res; 2022 Jan; 16(2):. PubMed ID: 34996056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constructing an E-Nose Using Metal-Ion-Induced Assembly of Graphene Oxide for Diagnosis of Lung Cancer via Exhaled Breath.
    Chen Q; Chen Z; Liu D; He Z; Wu J
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17713-17724. PubMed ID: 32203649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a breath analysis system for diabetes screening and blood glucose level prediction.
    Yan K; Zhang D; Wu D; Wei H; Lu G
    IEEE Trans Biomed Eng; 2014 Nov; 61(11):2787-95. PubMed ID: 24951676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward portable breath acetone analysis for diabetes detection.
    Righettoni M; Tricoli A
    J Breath Res; 2011 Sep; 5(3):037109. PubMed ID: 21828897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-Time Non-Invasive Detection and Classification of Diabetes Using Modified Convolution Neural Network.
    Lekha S; M S
    IEEE J Biomed Health Inform; 2018 Sep; 22(5):1630-1636. PubMed ID: 28961131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An overview on the exponential growth of non-invasive diagnosis of diabetes mellitus from exhaled breath by nanostructured metal oxide Chemi-resistive gas sensors and μ-preconcentrator.
    Kalidoss R; Umapathy S
    Biomed Microdevices; 2019 Dec; 22(1):2. PubMed ID: 31797133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnosis of diabetes by image detection of breath using gas-sensitive LAPS.
    Zhang Q; Wang P; Li J; Gao X
    Biosens Bioelectron; 2000 Aug; 15(5-6):249-56. PubMed ID: 11219736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements.
    Wang Z; Wang C
    J Breath Res; 2013 Sep; 7(3):037109. PubMed ID: 23959840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Study on the Preparation and Gas Sensing Properties of Reduced Graphene Oxide/SnO
    Kalidoss R; Umapathy S; Anandan R; Ganesh V; Sivalingam Y
    Anal Chem; 2019 Apr; 91(8):5116-5124. PubMed ID: 30869871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Breath Classification Using XGBoost Algorithm for Diabetes Detection.
    Paleczek A; Grochala D; Rydosz A
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34207196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feature selection for elderly faller classification based on wearable sensors.
    Howcroft J; Kofman J; Lemaire ED
    J Neuroeng Rehabil; 2017 May; 14(1):47. PubMed ID: 28558724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlations between blood glucose and breath components from portable gas sensors and PTR-TOF-MS.
    Righettoni M; Schmid A; Amann A; Pratsinis SE
    J Breath Res; 2013 Sep; 7(3):037110. PubMed ID: 23959908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breath acetone monitoring by portable Si:WO3 gas sensors.
    Righettoni M; Tricoli A; Gass S; Schmid A; Amann A; Pratsinis SE
    Anal Chim Acta; 2012 Aug; 738():69-75. PubMed ID: 22790702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The State of the Art on Graphene-Based Sensors for Human Health Monitoring through Breath Biomarkers.
    Moura PC; Ribeiro PA; Raposo M; Vassilenko V
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO(2) nanofibers functionalized with reduced graphene oxide nanosheets.
    Choi SJ; Jang BH; Lee SJ; Min BK; Rothschild A; Kim ID
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2588-97. PubMed ID: 24456186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.