These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 33049728)
1. Graphene field effect transistor scaling for ultra-low-noise sensors. Tran NAM; Fakih I; Durnan O; Hu A; Aygar AM; Napal I; Centeno A; Zurutuza A; Reulet B; Szkopek T Nanotechnology; 2021 Jan; 32(4):045502. PubMed ID: 33049728 [TBL] [Abstract][Full Text] [Related]
2. Carrier-Number-Fluctuation Induced Ultralow 1/f Noise Level in Top-Gated Graphene Field Effect Transistor. Peng S; Jin Z; Zhang D; Shi J; Mao D; Wang S; Yu G ACS Appl Mater Interfaces; 2017 Mar; 9(8):6661-6665. PubMed ID: 28176524 [TBL] [Abstract][Full Text] [Related]
3. Simulations of Graphene Nanoribbon Field Effect Transistor for the Detection of Propane and Butane Gases: A First Principles Study. Rashid MH; Koel A; Rang T Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31947803 [TBL] [Abstract][Full Text] [Related]
4. Suspending effect on low-frequency charge noise in graphene quantum dot. Song XX; Li HO; You J; Han TY; Cao G; Tu T; Xiao M; Guo GC; Jiang HW; Guo GP Sci Rep; 2015 Jan; 5():8142. PubMed ID: 25634250 [TBL] [Abstract][Full Text] [Related]
5. Photoconductivity, pH Sensitivity, Noise, and Channel Length Effects in Si Nanowire FET Sensors. Gasparyan F; Zadorozhnyi I; Khondkaryan H; Arakelyan A; Vitusevich S Nanoscale Res Lett; 2018 Mar; 13(1):87. PubMed ID: 29589128 [TBL] [Abstract][Full Text] [Related]
6. Silicon Nanowire Field Effect Transistor Sensors with Minimal Sensor-to-Sensor Variations and Enhanced Sensing Characteristics. Zafar S; D'Emic C; Jagtiani A; Kratschmer E; Miao X; Zhu Y; Mo R; Sosa N; Hamann H; Shahidi G; Riel H ACS Nano; 2018 Jul; 12(7):6577-6587. PubMed ID: 29932634 [TBL] [Abstract][Full Text] [Related]
7. Low-Cost Source Measure Unit (SMU) to Characterize Sensors Built on Graphene-Channel Field-Effect Transistors. Galanti AM; Haidekker MA Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931626 [TBL] [Abstract][Full Text] [Related]
8. The role of graphene patterning in field-effect transistor sensors to detect the tau protein for Alzheimer's disease: Simplifying the immobilization process and improving the performance of graphene-based immunosensors. Kwon SS; Kim D; Yun M; Son JG; Lee SH Biosens Bioelectron; 2021 Nov; 192():113519. PubMed ID: 34333316 [TBL] [Abstract][Full Text] [Related]
9. High-Performance Sensors Based on Resistance Fluctuations of Single-Layer-Graphene Transistors. Amin KR; Bid A ACS Appl Mater Interfaces; 2015 Sep; 7(35):19825-30. PubMed ID: 26301696 [TBL] [Abstract][Full Text] [Related]
10. Graphene Nanogrids FET Immunosensor: Signal to Noise Ratio Enhancement. Basu J; RoyChaudhuri C Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27740605 [TBL] [Abstract][Full Text] [Related]
11. Schottky Barrier Variable Graphene/Multilayer-MoS Lee I; Kim JN; Kang WT; Shin YS; Lee BH; Yu WJ ACS Appl Mater Interfaces; 2020 Jan; 12(2):2854-2861. PubMed ID: 31855598 [TBL] [Abstract][Full Text] [Related]
12. High-field modulated ion-selective field-effect-transistor (FET) sensors with sensitivity higher than the ideal Nernst sensitivity. Chen YT; Sarangadharan I; Sukesan R; Hseih CY; Lee GY; Chyi JI; Wang YL Sci Rep; 2018 May; 8(1):8300. PubMed ID: 29844607 [TBL] [Abstract][Full Text] [Related]
13. Electrical and Low Frequency Noise Characterization of Graphene Chemical Sensor Devices Having Different Geometries. Nah J; Perkins FK; Lock EH; Nath A; Boyd A; Myers-Ward RL; Gaskill DK; Osofsky M; Rao MV Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161931 [TBL] [Abstract][Full Text] [Related]
14. Advances in the fabrication of graphene transistors on flexible substrates. Fisichella G; Lo Verso S; Di Marco S; Vinciguerra V; Schilirò E; Di Franco S; Lo Nigro R; Roccaforte F; Zurutuza A; Centeno A; Ravesi S; Giannazzo F Beilstein J Nanotechnol; 2017; 8():467-474. PubMed ID: 28326237 [TBL] [Abstract][Full Text] [Related]
15. Sensing Remote Bulk Defects through Resistance Noise in a Large-Area Graphene Field-Effect Transistor. Moulick S; Alam R; Pal AN ACS Appl Mater Interfaces; 2022 Nov; 14(45):51105-51112. PubMed ID: 36323003 [TBL] [Abstract][Full Text] [Related]
16. Process Development of a Liquid-Gated Graphene Field-Effect Transistor Gas Sensor for Applications in Smart Agriculture. Lu J; Shiraishi N; Imaizumi R; Zhang L; Kimura M Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409416 [TBL] [Abstract][Full Text] [Related]
17. Surface Modulation of Graphene Field Effect Transistors on Periodic Trench Structure. Jin JE; Choi JH; Yun H; Jang HK; Lee BC; Choi A; Joo MK; Dettlaff-Weglikowska U; Roth S; Lee SW; Lee JW; Kim GT ACS Appl Mater Interfaces; 2016 Jul; 8(28):18513-8. PubMed ID: 27302334 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene. Zheng C; Huang L; Zhang H; Sun Z; Zhang Z; Zhang GJ ACS Appl Mater Interfaces; 2015 Aug; 7(31):16953-9. PubMed ID: 26203889 [TBL] [Abstract][Full Text] [Related]
19. Organic Vapor Sensing Mechanisms by Large-Area Graphene Back-Gated Field-Effect Transistors under UV Irradiation. Drozdowska K; Rehman A; Sai P; Stonio B; Krajewska A; Dub M; Kacperski J; Cywiński G; Haras M; Rumyantsev S; Österlund L; Smulko J; Kwiatkowski A ACS Sens; 2022 Oct; 7(10):3094-3101. PubMed ID: 36121758 [TBL] [Abstract][Full Text] [Related]
20. Proposition of deposition and bias conditions for optimal signal-to-noise-ratio in resistor- and FET-type gas sensors. Shin W; Jung G; Hong S; Jeong Y; Park J; Kim D; Jang D; Kwon D; Bae JH; Park BG; Lee JH Nanoscale; 2020 Oct; 12(38):19768-19775. PubMed ID: 32966525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]