These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33049729)

  • 1. Spatial-temporal aspects of continuous EEG-based neurorobotic control.
    Suma D; Meng J; Edelman BJ; He B
    J Neural Eng; 2020 Nov; 17(6):. PubMed ID: 33049729
    [No Abstract]   [Full Text] [Related]  

  • 2. A brain-actuated robotic arm system using non-invasive hybrid brain-computer interface and shared control strategy.
    Cao L; Li G; Xu Y; Zhang H; Shu X; Zhang D
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33862607
    [No Abstract]   [Full Text] [Related]  

  • 3. Integrating Simultaneous Motor Imagery and Spatial Attention for EEG-BCI Control.
    Forenzo D; Liu Y; Kim J; Ding Y; Yoon T; He B
    IEEE Trans Biomed Eng; 2024 Jan; 71(1):282-294. PubMed ID: 37494151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG characteristic investigation of the sixth-finger motor imagery and optimal channel selection for classification.
    Liu Y; Wang Z; Huang S; Wang W; Ming D
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 35008079
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparison of EEG measurement of upper limb movement in motor imagery training system.
    Suwannarat A; Pan-Ngum S; Israsena P
    Biomed Eng Online; 2018 Aug; 17(1):103. PubMed ID: 30071853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional Brain-Computer Interface Control Through Simultaneous Overt Spatial Attentional and Motor Imagery Tasks.
    Meng J; Streitz T; Gulachek N; Suma D; He B
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2417-2427. PubMed ID: 30281428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users.
    Tibrewal N; Leeuwis N; Alimardani M
    PLoS One; 2022; 17(7):e0268880. PubMed ID: 35867703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing Prediction Model for a Noninvasive Brain-Computer Interface Platform Using Channel Selection, Classification, and Regression.
    Borhani S; Kilmarx J; Saffo D; Ng L; Abiri R; Zhao X
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2475-2482. PubMed ID: 30640636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive neuroimaging enhances continuous neural tracking for robotic device control.
    Edelman BJ; Meng J; Suma D; Zurn C; Nagarajan E; Baxter BS; Cline CC; He B
    Sci Robot; 2019 Jun; 4(31):. PubMed ID: 31656937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible coding scheme for robotic arm control driven by motor imagery decoding.
    Ai Q; Zhao M; Chen K; Zhao X; Ma L; Liu Q
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35896097
    [No Abstract]   [Full Text] [Related]  

  • 13. A binary motor imagery tasks based brain-computer interface for two-dimensional movement control.
    Xia B; Cao L; Maysam O; Li J; Xie H; Su C; Birbaumer N
    J Neural Eng; 2017 Dec; 14(6):066009. PubMed ID: 29130453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the feasibility of using motor imagery EEG-based brain-computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up.
    Onose G; Grozea C; Anghelescu A; Daia C; Sinescu CJ; Ciurea AV; Spircu T; Mirea A; Andone I; Spânu A; Popescu C; Mihăescu AS; Fazli S; Danóczy M; Popescu F
    Spinal Cord; 2012 Aug; 50(8):599-608. PubMed ID: 22410845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benefits of deep learning classification of continuous noninvasive brain-computer interface control.
    Stieger JR; Engel SA; Suma D; He B
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34038873
    [No Abstract]   [Full Text] [Related]  

  • 17. Investigating User Proficiency of Motor Imagery for EEG-Based BCI System to Control Simulated Wheelchair.
    Saichoo T; Boonbrahm P; Punsawad Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor imagery recognition with automatic EEG channel selection and deep learning.
    Zhang H; Zhao X; Wu Z; Sun B; Li T
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33181505
    [No Abstract]   [Full Text] [Related]  

  • 19. A binary method for simple and accurate two-dimensional cursor control from EEG with minimal subject training.
    Kayagil TA; Bai O; Henriquez CS; Lin P; Furlani SJ; Vorbach S; Hallett M
    J Neuroeng Rehabil; 2009 May; 6():14. PubMed ID: 19419576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining and quantifying users' mental imagery-based BCI skills: a first step.
    Lotte F; Jeunet C
    J Neural Eng; 2018 Aug; 15(4):046030. PubMed ID: 29769435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.