These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 33049824)

  • 1. Cellulose, hemicellulose, lignin, and their derivatives as multi-components of bio-based feedstocks for 3D printing.
    Yang J; An X; Liu L; Tang S; Cao H; Xu Q; Liu H
    Carbohydr Polym; 2020 Dec; 250():116881. PubMed ID: 33049824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current advances and future perspectives of 3D printing natural-derived biopolymers.
    Liu J; Sun L; Xu W; Wang Q; Yu S; Sun J
    Carbohydr Polym; 2019 Mar; 207():297-316. PubMed ID: 30600012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printing using plant-derived cellulose and its derivatives: A review.
    Dai L; Cheng T; Duan C; Zhao W; Zhang W; Zou X; Aspler J; Ni Y
    Carbohydr Polym; 2019 Jan; 203():71-86. PubMed ID: 30318237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One pot green process for facile fractionation of sorghum biomass to lignin, cellulose and hemicellulose nanoparticles using deep eutectic solvent.
    Srinivasan S; Venkatachalam S
    Int J Biol Macromol; 2024 Oct; 277(Pt 3):134295. PubMed ID: 39098673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printing of lignin: Challenges, opportunities and roads onward.
    Ebers LS; Arya A; Bowland CC; Glasser WG; Chmely SC; Naskar AK; Laborie MP
    Biopolymers; 2021 Jun; 112(6):e23431. PubMed ID: 33974275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: comparison of N₂ and CO₂ atmosphere.
    Zhang J; Chen T; Wu J; Wu J
    Bioresour Technol; 2014 Aug; 166():87-95. PubMed ID: 24907567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NOx and N2O precursors from biomass pyrolysis: role of cellulose, hemicellulose and lignin.
    Ren Q; Zhao C
    Environ Sci Technol; 2013 Aug; 47(15):8955-61. PubMed ID: 23848228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Raman Imaging and Multivariate Analysis to Visualize Lignin, Cellulose, and Hemicellulose in the Plant Cell Wall.
    Zhang X; Chen S; Xu F
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28654048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in lignin-based 3D printing materials: A mini-review.
    Wan Z; Zhang H; Niu M; Guo Y; Li H
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126660. PubMed ID: 37660847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lignin-Based Direct Ink Printed Structural Scaffolds.
    Jiang B; Yao Y; Liang Z; Gao J; Chen G; Xia Q; Mi R; Jiao M; Wang X; Hu L
    Small; 2020 Aug; 16(31):e1907212. PubMed ID: 32597027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass.
    Pasangulapati V; Ramachandriya KD; Kumar A; Wilkins MR; Jones CL; Huhnke RL
    Bioresour Technol; 2012 Jun; 114():663-9. PubMed ID: 22520219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of Hemicellulose, Cellulose and Lignin in Moso Bamboo by Near Infrared Spectroscopy.
    Li X; Sun C; Zhou B; He Y
    Sci Rep; 2015 Nov; 5():17210. PubMed ID: 26601657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protecting innovation: genomics-based intellectual property for the development of feedstock for second-generation biofuels.
    Harfouche A; Grant K; Selig M; Tsai D; Meilan R
    Recent Pat DNA Gene Seq; 2010 Jun; 4(2):94-105. PubMed ID: 20470242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lignin: A multi-faceted role/function in 3D printing inks.
    Yang J; An X; Lu B; Cao H; Cheng Z; Tong X; Liu H; Ni Y
    Int J Biol Macromol; 2024 May; 267(Pt 2):131364. PubMed ID: 38583844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Prediction of Cellulose, Hemicellulose, Lignin and Ash Content of Four Miscanthus Bio-Energy Crops Using Near-Infrared Spectroscopy].
    Li XN; Fan XF; Wu JY; Zhang GF; Liu SY; Wu MJ; Cheng YB; Zhang N
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jan; 36(1):64-9. PubMed ID: 27228742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis.
    Thomsen MH; Thygesen A; Thomsen AB
    Bioresour Technol; 2008 Jul; 99(10):4221-8. PubMed ID: 17936621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of non-structural components and lignin on hemicellulose extraction.
    Liu KX; Li HQ; Zhang J; Zhang ZG; Xu J
    Bioresour Technol; 2016 Aug; 214():755-760. PubMed ID: 27213576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding Plant Biomass via Computational Modeling.
    Zhou S; Jin K; Buehler MJ
    Adv Mater; 2021 Jul; 33(28):e2003206. PubMed ID: 32945027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Bioprinting of Lignocellulosic Biomaterials.
    Shavandi A; Hosseini S; Okoro OV; Nie L; Eghbali Babadi F; Melchels F
    Adv Healthc Mater; 2020 Dec; 9(24):e2001472. PubMed ID: 33103365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: Cellulose, hemicellulose and lignin.
    Lin L; Yan R; Liu Y; Jiang W
    Bioresour Technol; 2010 Nov; 101(21):8217-23. PubMed ID: 20639116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.