These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33049839)

  • 61. The formation mechanism and thermodynamic properties of potato protein isolate-chitosan complex under dynamic high-pressure microfluidization (DHPM) treatment.
    Hu C; Xiong Z; Xiong H; Chen L; Zhang Z; Li Q
    Int J Biol Macromol; 2020 Jul; 154():486-492. PubMed ID: 32135257
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Liquid-liquid and liquid-solid separation in self-assembled chitosan-alginate and chitosan-pectin complexes.
    García-Jiménez A; Román-Guerrero A; Pérez-Alonso C; Fouconnier B
    Int J Biol Macromol; 2022 Dec; 223(Pt A):1368-1380. PubMed ID: 36395941
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fabrication of lipase-loaded particles by coacervation with chitosan.
    Liu YW; Zhou Y; Huang GQ; Guo LP; Li XD; Xiao JX
    Food Chem; 2022 Aug; 385():132689. PubMed ID: 35303653
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The impact of pH and biopolymer ratio on the complex coacervation of
    Yücetepe A; Yavuz-Düzgün M; Şensu E; Bildik F; Demircan E; Özçelik B
    J Food Sci Technol; 2021 Apr; 58(4):1274-1285. PubMed ID: 33746255
    [No Abstract]   [Full Text] [Related]  

  • 65. Binary Solutions of Hyaluronan and Lactose-Modified Chitosan: The Influence of Experimental Variables in Assembling Complex Coacervates.
    Vecchies F; Sacco P; Marsich E; Cinelli G; Lopez F; Donati I
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32294992
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Chitosan⁻Carboxymethylcellulose-Based Polyelectrolyte Complexation and Microcapsule Shell Formulation.
    Roy JC; Ferri A; Giraud S; Jinping G; Salaün F
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30149641
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Encapsulation Using Plant Proteins: Thermodynamics and Kinetics of Wetting for Simple Zein Coacervates.
    Li X; Erni P; van der Gucht J; de Vries R
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15802-15809. PubMed ID: 32119509
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Pea protein isolate-gum Arabic Maillard conjugates improves physical and oxidative stability of oil-in-water emulsions.
    Zha F; Dong S; Rao J; Chen B
    Food Chem; 2019 Jul; 285():130-138. PubMed ID: 30797327
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Hyaluronic Acid/Chitosan Coacervate-Based Scaffolds.
    Karabiyik Acar O; Kayitmazer AB; Torun Kose G
    Biomacromolecules; 2018 Apr; 19(4):1198-1211. PubMed ID: 29554416
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Morphology and mechanical behaviour of pea-based starch-protein composites obtained by extrusion.
    Jebalia I; Maigret JE; Réguerre AL; Novales B; Guessasma S; Lourdin D; Della Valle G; Kristiawan M
    Carbohydr Polym; 2019 Nov; 223():115086. PubMed ID: 31426950
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Encapsulation of antitumor drug Doxorubicin and its analogue by chitosan nanoparticles.
    Sanyakamdhorn S; Agudelo D; Tajmir-Riahi HA
    Biomacromolecules; 2013 Feb; 14(2):557-63. PubMed ID: 23305154
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Environmental stress stability of microencapsules based on liposomes decorated with chitosan and sodium alginate.
    Liu W; Liu W; Ye A; Peng S; Wei F; Liu C; Han J
    Food Chem; 2016 Apr; 196():396-404. PubMed ID: 26593507
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of Pea Legumin-to-Vicilin Ratio on the Protein Emulsifying Properties: Explanation in Terms of Protein Molecular and Interfacial Properties.
    Meijers MGJ; Meinders MBJ; Vincken JP; Wierenga PA
    J Agric Food Chem; 2023 Jul; 71(29):11228-11238. PubMed ID: 37433201
    [TBL] [Abstract][Full Text] [Related]  

  • 74.
    Krause S; Debon S; Pälchen K; Jakobi R; Rega B; Bonazzi C; Grauwet T
    Food Funct; 2022 Mar; 13(6):3206-3219. PubMed ID: 35212347
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties.
    Bogdanov IV; Shenkarev ZO; Finkina EI; Melnikova DN; Rumynskiy EI; Arseniev AS; Ovchinnikova TV
    BMC Plant Biol; 2016 Apr; 16():107. PubMed ID: 27137920
    [TBL] [Abstract][Full Text] [Related]  

  • 76. pH-Dependent intestine-targeted delivery potency of the O-carboxymethyl chitosan - gum Arabic coacervates.
    Xiao JX; Zhu CP; Cheng LY; Yang J; Huang GQ
    Int J Biol Macromol; 2018 Oct; 117():315-322. PubMed ID: 29807084
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Thermodynamic characterization of acacia gum-beta-lactoglobulin complex coacervation.
    Aberkane L; Jasniewski J; Gaiani C; Scher J; Sanchez C
    Langmuir; 2010 Aug; 26(15):12523-33. PubMed ID: 20586462
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Self-healing fish gelatin/sodium montmorillonite biohybrid coacervates: structural and rheological characterization.
    Qazvini NT; Bolisetty S; Adamcik J; Mezzenga R
    Biomacromolecules; 2012 Jul; 13(7):2136-47. PubMed ID: 22642874
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Complex Coacervation and Overcharging during Interaction between Hydrophobic Zein and Hydrophilic Laponite in Aqueous Ethanol Solution.
    Tiwari P; Bharti I; Bohidar HB; Quadir S; Joshi MC; Arfin N
    ACS Omega; 2020 Dec; 5(51):33064-33074. PubMed ID: 33403268
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fabrication and characterization of complex coacervates utilizing gelatin and carboxymethyl starch.
    Zhang Y; Xie S; Huang W; Zhan L; Huang Y; Chen P; Xie F
    J Sci Food Agric; 2024 Apr; 104(6):3585-3593. PubMed ID: 38150581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.