BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33049872)

  • 1. Cellulose and lignocellulose nanofibril suspensions and films: A comparison.
    Amini E; Hafez I; Tajvidi M; Bousfield DW
    Carbohydr Polym; 2020 Dec; 250():117011. PubMed ID: 33049872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and Characteristics of Wet-Spun Filament Made of Cellulose Nanofibrils with Different Chemical Compositions.
    Park CW; Park JS; Han SY; Lee EA; Kwon GJ; Seo YH; Gwon JG; Lee SY; Lee SH
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32325798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and Properties of Wet-Spun Microcomposite Filaments from Various CNFs and Alginate.
    Park JS; Park CW; Han SY; Lee EA; Cindradewi AW; Kim JK; Kwon GJ; Seo YH; Yoo WJ; Gwon JY; Lee SH
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34073715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and Characterization of Polybutylene Succinate Reinforced with Pure Cellulose Nanofibril and Lignocellulose Nanofibril Using Two-Step Process.
    Cindradewi AW; Bandi R; Park CW; Park JS; Lee EA; Kim JK; Kwon GJ; Han SY; Lee SH
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screw extrusion pretreatment for high-yield lignocellulose nanofibrils (LCNF) production from wood biomass and non-wood biomass.
    Lu H; Zhang L; Yan M; Wang K; Jiang J
    Carbohydr Polym; 2022 Feb; 277():118897. PubMed ID: 34893299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils.
    Nie S; Zhang K; Lin X; Zhang C; Yan D; Liang H; Wang S
    Carbohydr Polym; 2018 Feb; 181():1136-1142. PubMed ID: 29253942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical properties of Carum copticum essential oil loaded chitosan films containing organic nanoreinforcements.
    Jahed E; Khaledabad MA; Almasi H; Hasanzadeh R
    Carbohydr Polym; 2017 May; 164():325-338. PubMed ID: 28325333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paper-Based Oil Barrier Packaging using Lignin-Containing Cellulose Nanofibrils.
    H Tayeb A; Tajvidi M; Bousfield D
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32188070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong and optically transparent films prepared using cellulosic solid residue recovered from cellulose nanocrystals production waste stream.
    Wang Q; Zhu JY; Considine JM
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2527-34. PubMed ID: 23473973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid.
    Bian H; Chen L; Dai H; Zhu JY
    Carbohydr Polym; 2017 Jul; 167():167-176. PubMed ID: 28433151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption Characteristics of Ag Nanoparticles on Cellulose Nanofibrils with Different Chemical Compositions.
    Kwon GJ; Han SY; Park CW; Park JS; Lee EA; Kim NH; Alle M; Bandi R; Lee SH
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignocellulosic nanofibrils produced using wheat straw and their pulping solid residue: From agricultural waste to cellulose nanomaterials.
    Bian H; Gao Y; Luo J; Jiao L; Wu W; Fang G; Dai H
    Waste Manag; 2019 May; 91():1-8. PubMed ID: 31203931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing lignocellulosic nanofibril dimensions and morphology by mechanical refining for enhanced adhesion.
    Kelly PV; Gardner DJ; Gramlich WM
    Carbohydr Polym; 2021 Dec; 273():118566. PubMed ID: 34560977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new quality index for benchmarking of different cellulose nanofibrils.
    Desmaisons J; Boutonnet E; Rueff M; Dufresne A; Bras J
    Carbohydr Polym; 2017 Oct; 174():318-329. PubMed ID: 28821073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copaiba oil and vegetal tannin as functionalizing agents for açai nanofibril films: valorization of forest wastes from Amazonia.
    Scatolino MV; Bufalino L; Dias MC; Mendes LM; da Silva MS; Tonoli GHD; de Souza TM; Junior FTA
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):66422-66437. PubMed ID: 35501446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobization and smoothing of cellulose nanofibril films by cellulose ester coatings.
    Willberg-Keyriläinen P; Vartiainen J; Pelto J; Ropponen J
    Carbohydr Polym; 2017 Aug; 170():160-165. PubMed ID: 28521982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose Nanofibril Formulations Incorporating a Low-Molecular-Weight Alginate Oligosaccharide Modify Bacterial Biofilm Development.
    Jack AA; Nordli HR; Powell LC; Farnell DJJ; Pukstad B; Rye PD; Thomas DW; Chinga-Carrasco G; Hill KE
    Biomacromolecules; 2019 Aug; 20(8):2953-2961. PubMed ID: 31251598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microemulsion systems for fiber deconstruction into cellulose nanofibrils.
    Carrillo CA; Laine J; Rojas OJ
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22622-7. PubMed ID: 25454578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the Nanoscale Properties of Phosphorylated Cellulose Nanofibril-Based Thin Films To Achieve Highly Fire-Protecting Coatings for Flammable Solid Materials.
    Ghanadpour M; Carosio F; Ruda MC; Wågberg L
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32543-32555. PubMed ID: 30148604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse.
    Travalini AP; Lamsal B; Magalhães WLE; Demiate IM
    Int J Biol Macromol; 2019 Oct; 139():1151-1161. PubMed ID: 31419552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.