BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 33049900)

  • 1. Ultra-high thermal-conductive, reduced graphene oxide welded cellulose nanofibrils network for efficient thermal management.
    Nie S; Mo J; Zhang Y; Xiong C; Wang S
    Carbohydr Polym; 2020 Dec; 250():116971. PubMed ID: 33049900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong Reinforcement Effects in 2D Cellulose Nanofibril-Graphene Oxide (CNF-GO) Nanocomposites due to GO-Induced CNF Ordering.
    Mianehrow H; Lo Re G; Carosio F; Fina A; Larsson PT; Chen P; Berglund LA
    J Mater Chem A Mater; 2020 Sep; 8(34):17608-17620. PubMed ID: 33796318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphitized-rGO/Polyimide Aerogel as the Compressible Thermal Interface Material with Both High In-Plane and Through-Plane Thermal Conductivities.
    Lv P; Cheng H; Ji C; Wei W
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33946600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double Carbon Networks Reinforce the Thermal Storage and Thermal Transfer Properties of 1-Octadecanol Phase Change Materials.
    Wang X; Wang Q; Cheng X; Chen X; Bai M
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38004997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A facile way to produce epoxy nanocomposites having excellent thermal conductivity with low contents of reduced graphene oxide.
    Olowojoba GB; Kopsidas S; Eslava S; Gutierrez ES; Kinloch AJ; Mattevi C; Rocha VG; Taylor AC
    J Mater Sci; 2017; 52(12):7323-7344. PubMed ID: 32226133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wood-inspired elastic and conductive cellulose aerogel with anisotropic tubular and multilayered structure for wearable pressure sensors and supercapacitors.
    Chen F; Liao Y; Wei S; Zhou H; Wu Y; Qing Y; Li L; Luo S; Tian C; Wu Y
    Int J Biol Macromol; 2023 Oct; 250():126197. PubMed ID: 37558032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmentally Friendly Water-Based Reduced Graphene Oxide/Cellulose Nanofiber Ink for Supercapacitor Electrode Applications.
    Nargatti KI; Ahankari SS; Dizon JRC; Subramaniam RT
    ACS Omega; 2024 Mar; 9(10):11730-11737. PubMed ID: 38496988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Anisotropy of Reduced Graphene Oxide on Thermal and Electrical Properties in Silicon Carbide Matrix Composites.
    Broniszewski K; Woźniak J; Cygan T; Kostecki M; Moszczyńska D; Chmielewski M; Dydek K; Olszyna A
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced Graphene Oxide Embedded with MQ Silicone Resin Nano-Aggregates for Silicone Rubber Composites with Enhanced Thermal Conductivity and Mechanical Performance.
    Liang W; Ge X; Ge J; Li T; Zhao T; Chen X; Song Y; Cui Y; Khan M; Ji J; Pang X; Liu R
    Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive review on processing, characteristics, and applications of cellulose nanofibrils/graphene hybrid-based nanocomposites: Toward a synergy between two-star nanomaterials.
    Trache D; Tarchoun AF; Abdelaziz A; Bessa W; Thakur S; Hussin MH; Brosse N; Thakur VK
    Int J Biol Macromol; 2024 May; 268(Pt 2):131633. PubMed ID: 38641279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of phase change material filled hybrid 2D/3D graphene structure with ultra-high thermal effusivity for effective thermal management.
    Liang G; Zhang J; An S; Tang J; Ju S; Bai S; Jiang D
    MethodsX; 2021; 8():101385. PubMed ID: 34430281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial Modulation of Graphene by Polythiophene with Controlled Molecular Weight to Enhance Thermal Conductivity.
    Li Y; Wang Y; Chen P; Xia R; Wu B; Qian J
    Membranes (Basel); 2021 Nov; 11(11):. PubMed ID: 34832125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significantly Enhancing Mechanical and Thermal Properties of Cellulose-Based Composites by Adding Small Amounts of Lysozyme-Modified Graphene Nanoplatelets via Forming Strong Double-Cross-Linked Interface Interactions.
    Shen Y; Zhang X; Su J; Lin L; Jiang Z; Qiu L; Wang S; Wu B; Pu C; Cai X; Liu Y; Zhang X
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):43159-43168. PubMed ID: 37651452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RGO and Three-Dimensional Graphene Networks Co-modified TIMs with High Performances.
    Bo T; Zhengwei W; Huang W; Sen L; Tingting M; Haogang Y; Xufei L
    Nanoscale Res Lett; 2017 Sep; 12(1):527. PubMed ID: 28875303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of Molten Nitrate Thermal Properties by Reduced Graphene Oxide and Graphene Quantum Dots.
    Hamdy E; Saad L; Abulfotuh F; Soliman M; Ebrahim S
    ACS Omega; 2020 Sep; 5(34):21345-21354. PubMed ID: 32905410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct-Write Printed Slippery Surface for Assembling a High-Quality Graphene Structure and Its Application in Flexible Electric Actuators.
    Kang H; Wang S; Li C; Wang K; Sun J
    Langmuir; 2024 Mar; 40(12):6571-6581. PubMed ID: 38466081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible Surface Engineering of Cellulose Elementary Fibrils: From Ultralong Nanocelluloses to Advanced Cellulosic Materials.
    Zhou M; Chen D; Chen Q; Chen P; Song G; Chang C
    Adv Mater; 2024 May; 36(21):e2312220. PubMed ID: 38288877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-Assisted Thermal Interface Materials with a Satisfied Interface Contact Level Between the Matrix and Fillers.
    Tang B; Li X; Huang W; Yu H; Ling X
    Nanoscale Res Lett; 2018 Sep; 13(1):276. PubMed ID: 30203134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired H-Bonding Connected Gradient Nanostructure Actuators Based on Cellulose Nanofibrils and Graphene.
    Yang Z; Wang Y; Lan L; Wang Y; Zhang X
    Small; 2024 May; ():e2401580. PubMed ID: 38708893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced reduction of graphene oxide via laser-dispersion coupling: Towards large-scale, low-defect graphene for crease-free heat-dissipating membranes in advanced flexible electronics.
    Sun J; Xiong Y; Jia H; Han L; Ye W; Sun L
    Sci Bull (Beijing); 2024 Jun; 69(11):1716-1727. PubMed ID: 38627135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.