These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 33050136)

  • 1. Biomimetic Hybrid Systems for Tissue Engineering.
    Yousefzade O; Katsarava R; Puiggalí J
    Biomimetics (Basel); 2020 Oct; 5(4):. PubMed ID: 33050136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review.
    Chahal S; Kumar A; Hussian FSJ
    J Biomater Sci Polym Ed; 2019 Oct; 30(14):1308-1355. PubMed ID: 31181982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano/microfibrous polymeric constructs loaded with bioactive agents and designed for tissue engineering applications: a review.
    Puppi D; Zhang X; Yang L; Chiellini F; Sun X; Chiellini E
    J Biomed Mater Res B Appl Biomater; 2014 Oct; 102(7):1562-79. PubMed ID: 24678016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaffold-based Drug Delivery for Cartilage Tissue Regeneration.
    Shalumon KT; Chen JP
    Curr Pharm Des; 2015; 21(15):1979-90. PubMed ID: 25732662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaffolds Fabricated from Natural Polymers/Composites by Electrospinning for Bone Tissue Regeneration.
    Sofi HS; Ashraf R; Beigh MA; Sheikh FA
    Adv Exp Med Biol; 2018; 1078():49-78. PubMed ID: 30357618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endosteal-like extracellular matrix expression on melt electrospun written scaffolds.
    Muerza-Cascante ML; Shokoohmand A; Khosrotehrani K; Haylock D; Dalton PD; Hutmacher DW; Loessner D
    Acta Biomater; 2017 Apr; 52():145-158. PubMed ID: 28017869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic mineralized hierarchical hybrid scaffolds based on in situ synthesis of nano-hydroxyapatite/chitosan/chondroitin sulfate/hyaluronic acid for bone tissue engineering.
    Hu Y; Chen J; Fan T; Zhang Y; Zhao Y; Shi X; Zhang Q
    Colloids Surf B Biointerfaces; 2017 Sep; 157():93-100. PubMed ID: 28578273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic approaches for tissue engineering.
    Reddy R; Reddy N
    J Biomater Sci Polym Ed; 2018 Oct; 29(14):1667-1685. PubMed ID: 29998794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
    Wu S; Duan B; Qin X; Butcher JT
    Acta Biomater; 2017 Mar; 51():89-100. PubMed ID: 28110071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation.
    Wang L; Wu Y; Hu T; Ma PX; Guo B
    Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering.
    Kim HD; Amirthalingam S; Kim SL; Lee SS; Rangasamy J; Hwang NS
    Adv Healthc Mater; 2017 Dec; 6(23):. PubMed ID: 29171714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and evaluation of biomimetic-synthetic nanofibrous composites for soft tissue regeneration.
    Gee AO; Baker BM; Silverstein AM; Montero G; Esterhai JL; Mauck RL
    Cell Tissue Res; 2012 Mar; 347(3):803-13. PubMed ID: 22287042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues.
    Manoukian OS; Matta R; Letendre J; Collins P; Mazzocca AD; Kumbar SG
    Methods Mol Biol; 2017; 1570():261-278. PubMed ID: 28238143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An overview of advanced biocompatible and biomimetic materials for creation of replacement structures in the musculoskeletal systems: focusing on cartilage tissue engineering.
    Del Bakhshayesh AR; Asadi N; Alihemmati A; Tayefi Nasrabadi H; Montaseri A; Davaran S; Saghati S; Akbarzadeh A; Abedelahi A
    J Biol Eng; 2019; 13():85. PubMed ID: 31754372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Soft to Hard Biomimetic Materials: Tuning Micro/Nano-Architecture of Scaffolds for Tissue Regeneration.
    Carotenuto F; Politi S; Ul Haq A; De Matteis F; Tamburri E; Terranova ML; Teodori L; Pasquo A; Di Nardo P
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.
    Kennedy KM; Bhaw-Luximon A; Jhurry D
    Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myocardial tissue engineering using electrospun nanofiber composites.
    Kim PH; Cho JY
    BMB Rep; 2016 Jan; 49(1):26-36. PubMed ID: 26497579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of electrospinning with other techniques for the fabrication of 3D polymeric and composite nanofibrous scaffolds with improved cellular interactions.
    Bongiovanni Abel S; Montini Ballarin F; Abraham GA
    Nanotechnology; 2020 Apr; 31(17):172002. PubMed ID: 31931493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic Self-Assembling Peptide Hydrogels for Tissue Engineering Applications.
    Lu J; Wang X
    Adv Exp Med Biol; 2018; 1064():297-312. PubMed ID: 30471040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.