These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33050447)

  • 1. Wearable Hearing Device Spectral Enhancement Driven by Non-Negative Sparse Coding-Based Residual Noise Reduction.
    Kim SM
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the sparse coding shrinkage noise reduction algorithm in normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2014 Apr; 310():36-47. PubMed ID: 24495441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speech quality evaluation of a sparse coding shrinkage noise reduction algorithm with normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2015 Sep; 327():175-85. PubMed ID: 26232529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online approximation of the multichannel Wiener filter with preservation of interaural level difference for binaural hearing-aids.
    Marques do Carmo D; Costa MH
    Comput Biol Med; 2018 Apr; 95():188-197. PubMed ID: 29505947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speech enhancement with multichannel Wiener filter techniques in multimicrophone binaural hearing aids.
    Van den Bogaert T; Doclo S; Wouters J; Moonen M
    J Acoust Soc Am; 2009 Jan; 125(1):360-71. PubMed ID: 19173423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An environment-adaptive management algorithm for hearing-support devices incorporating listening situation and noise type classifiers.
    Yook S; Nam KW; Kim H; Hong SH; Jang DP; Kim IY
    Artif Organs; 2015 Apr; 39(4):361-8. PubMed ID: 25284135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of MVDR beamformer on a Speech Enhancement based Smartphone application for Hearing Aids.
    Shankar N; Kucuk A; Reddy CKA; Bhat GS; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():417-420. PubMed ID: 30440422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perceptual and Model-Based Evaluation of Ideal Time-Frequency Noise Reduction in Hearing-Impaired Listeners.
    Koning R; Bruce IC; Denys S; Wouters J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Mar; 26(3):687-697. PubMed ID: 29522412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Verification of Estimated Output Signal-to-Noise Ratios From a Phase Inversion Technique Using a Simulated Hearing Aid.
    Yun D; Shen Y; Lentz JJ
    Am J Audiol; 2023 Mar; 32(1):197-209. PubMed ID: 36706459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multicenter evaluation of signal enhancement algorithms for hearing aids.
    Luts H; Eneman K; Wouters J; Schulte M; Vormann M; Buechler M; Dillier N; Houben R; Dreschler WA; Froehlich M; Puder H; Grimm G; Hohmann V; Leijon A; Lombard A; Mauler D; Spriet A
    J Acoust Soc Am; 2010 Mar; 127(3):1491-505. PubMed ID: 20329849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving word recognition in noise among hearing-impaired subjects with a single-channel cochlear noise-reduction algorithm.
    Fink N; Furst M; Muchnik C
    J Acoust Soc Am; 2012 Sep; 132(3):1718-31. PubMed ID: 22978899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smartphone-based noise adaptive speech enhancement for hearing aid applications.
    Panahi I; Kehtarnavaz N; Thibodeau L
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():85-88. PubMed ID: 28268287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Compensated Multi-Channel Dynamic-Range Compressor for Hearing Aid Devices using Polyphase Implementation.
    Zou Z; Hao Y; Panahi I
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():429-432. PubMed ID: 30440426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-low-dose CT image denoising using modified BM3D scheme tailored to data statistics.
    Zhao T; Hoffman J; McNitt-Gray M; Ruan D
    Med Phys; 2019 Jan; 46(1):190-198. PubMed ID: 30351450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of a priori signal-to-noise ratio using neurograms for speech enhancement.
    Jassim WA; Harte N
    J Acoust Soc Am; 2020 Jun; 147(6):3830. PubMed ID: 32611151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speech intelligibility improvements with hearing aids using bilateral and binaural adaptive multichannel Wiener filtering based noise reduction.
    Cornelis B; Moonen M; Wouters J
    J Acoust Soc Am; 2012 Jun; 131(6):4743-55. PubMed ID: 22712947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of combined dynamic compression and single channel noise reduction for hearing aid applications.
    Kortlang S; Chen Z; Gerkmann T; Kollmeier B; Hohmann V; Ewert SD
    Int J Audiol; 2018 Jun; 57(sup3):S43-S54. PubMed ID: 28355947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two microphones spectral-coherence based speech enhancement for hearing aids using smartphone as an assistive device.
    Reddy CK; Yiya Hao ; Panahi I
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3670-3673. PubMed ID: 28269090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smartphone-based single-channel speech enhancement application for hearing aids.
    Shankar N; Bhat GS; Panahi IMS; Tittle S; Thibodeau LM
    J Acoust Soc Am; 2021 Sep; 150(3):1663. PubMed ID: 34598612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speech recognition with a hearing-aid processing scheme combining beamforming with mask-informed speech enhancement.
    Green T; Hilkhuysen G; Huckvale M; Rosen S; Brookes M; Moore A; Naylor P; Lightburn L; Xue W
    Trends Hear; 2022; 26():23312165211068629. PubMed ID: 34985356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.