These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 33050473)
1. Optimized Production of a Redox Metabolite (pyocyanin) by Bacame-Valenzuela FJ; Pérez-Garcia JA; Figueroa-Magallón ML; Espejel-Ayala F; Ortiz-Frade LA; Reyes-Vidal Y Microorganisms; 2020 Oct; 8(10):. PubMed ID: 33050473 [No Abstract] [Full Text] [Related]
2. Optimization of nutritional and environmental conditions for pyocyanin production by urine isolates of Elbargisy RM Saudi J Biol Sci; 2021 Jan; 28(1):993-1000. PubMed ID: 33424392 [No Abstract] [Full Text] [Related]
3. Metabolic engineering of E. coli for pyocyanin production. da Silva AJ; Cunha JS; Hreha T; Micocci KC; Selistre-de-Araujo HS; Barquera B; Koffas MAG Metab Eng; 2021 Mar; 64():15-25. PubMed ID: 33454430 [TBL] [Abstract][Full Text] [Related]
4. A new strategy for the efficient production of pyocyanin, a versatile pigment, in Ozdal M 3 Biotech; 2019 Oct; 9(10):374. PubMed ID: 31588398 [No Abstract] [Full Text] [Related]
5. Electrochemical sensors for identifying pyocyanin production in clinical Pseudomonas aeruginosa isolates. Sismaet HJ; Pinto AJ; Goluch ED Biosens Bioelectron; 2017 Nov; 97():65-69. PubMed ID: 28570940 [TBL] [Abstract][Full Text] [Related]
6. Real-Time Electrochemical Detection of Pseudomonas aeruginosa Phenazine Metabolites Using Transparent Carbon Ultramicroelectrode Arrays. Simoska O; Sans M; Fitzpatrick MD; Crittenden CM; Eberlin LS; Shear JB; Stevenson KJ ACS Sens; 2019 Jan; 4(1):170-179. PubMed ID: 30525472 [TBL] [Abstract][Full Text] [Related]
7. A purified and lyophilized Pseudomonas aeruginosa derived pyocyanin induces promising apoptotic and necrotic activities against MCF-7 human breast adenocarcinoma. Abdelaziz AA; Kamer AMA; Al-Monofy KB; Al-Madboly LA Microb Cell Fact; 2022 Dec; 21(1):262. PubMed ID: 36528623 [TBL] [Abstract][Full Text] [Related]
8. Mechanism for glutathione-mediated protection against the Pseudomonas aeruginosa redox toxin, pyocyanin. Muller M; Merrett ND Chem Biol Interact; 2015 May; 232():30-7. PubMed ID: 25791765 [TBL] [Abstract][Full Text] [Related]
9. Enhanced bioelectricity generation by improving pyocyanin production and membrane permeability through sophorolipid addition in Pseudomonas aeruginosa-inoculated microbial fuel cells. Shen HB; Yong XY; Chen YL; Liao ZH; Si RW; Zhou J; Wang SY; Yong YC; OuYang PK; Zheng T Bioresour Technol; 2014 Sep; 167():490-4. PubMed ID: 25011080 [TBL] [Abstract][Full Text] [Related]
10. Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonas-associated tissue injury. Britigan BE; Roeder TL; Rasmussen GT; Shasby DM; McCormick ML; Cox CD J Clin Invest; 1992 Dec; 90(6):2187-96. PubMed ID: 1469082 [TBL] [Abstract][Full Text] [Related]
11. Amplification of electrochemical signal by a whole-cell redox reactivation module for ultrasensitive detection of pyocyanin. Yang Y; Yu YY; Wang YZ; Zhang CL; Wang JX; Fang Z; Lv H; Zhong JJ; Yong YC Biosens Bioelectron; 2017 Dec; 98():338-344. PubMed ID: 28709085 [TBL] [Abstract][Full Text] [Related]
12. Effect of fetal and adult bovine serum on pyocyanin production in Moayedi A; Nowroozi J; Sepahy AA Iran J Basic Med Sci; 2017 Dec; 20(12):1331-1338. PubMed ID: 29238468 [TBL] [Abstract][Full Text] [Related]
13. Heat Shock Protein DnaJ in Zeng B; Wang C; Zhang P; Guo Z; Chen L; Duan K Microorganisms; 2020 Mar; 8(3):. PubMed ID: 32178243 [TBL] [Abstract][Full Text] [Related]
14. Reactions of Pseudomonas aeruginosa pyocyanin with reduced glutathione. Cheluvappa R; Shimmon R; Dawson M; Hilmer SN; Le Couteur DG Acta Biochim Pol; 2008; 55(3):571-80. PubMed ID: 18797520 [TBL] [Abstract][Full Text] [Related]