These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 33050557)

  • 1. Salmonid Antibacterial Immunity: An Aquaculture Perspective.
    Semple SL; Dixon B
    Biology (Basel); 2020 Oct; 9(10):. PubMed ID: 33050557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chilean aquaculture and the new challenges: Pathogens, immune response, vaccination and fish diversification.
    Flores-Kossack C; Montero R; Köllner B; Maisey K
    Fish Shellfish Immunol; 2020 Mar; 98():52-67. PubMed ID: 31899356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative assessment of live cyprinid and salmonid movement networks in England and Wales.
    Tidbury HJ; Ryder D; Thrush MA; Pearce F; Peeler EJ; Taylor NGH
    Prev Vet Med; 2020 Dec; 185():105200. PubMed ID: 33234335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress, challenges and opportunities in fish vaccine development.
    Adams A
    Fish Shellfish Immunol; 2019 Jul; 90():210-214. PubMed ID: 31039441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How can plant genetic engineering contribute to cost-effective fish vaccine development for promoting sustainable aquaculture?
    Clarke JL; Waheed MT; Lössl AG; Martinussen I; Daniell H
    Plant Mol Biol; 2013 Sep; 83(1-2):33-40. PubMed ID: 23729352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in salmonid fish immunology: A review of methods and techniques for lymphoid tissue and peripheral blood leucocyte isolation and application.
    Lulijwa R; Alfaro AC; Merien F; Meyer J; Young T
    Fish Shellfish Immunol; 2019 Dec; 95():44-80. PubMed ID: 31604150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular Bacterial Infections: A Challenge for Developing Cellular Mediated Immunity Vaccines for Farmed Fish.
    Munang'andu HM
    Microorganisms; 2018 Apr; 6(2):. PubMed ID: 29690563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of DNA vaccine technology to aquaculture.
    Heppell J; Davis HL
    Adv Drug Deliv Rev; 2000 Sep; 43(1):29-43. PubMed ID: 10967219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research Before Policy: Identifying Gaps in Salmonid Welfare Research That Require Further Study to Inform Evidence-Based Aquaculture Guidelines in Canada.
    Gaffney LP; Lavery JM
    Front Vet Sci; 2021; 8():768558. PubMed ID: 35155641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oral vaccines for finfish: academic theory or commercial reality?
    Vandenberg GW
    Anim Health Res Rev; 2004 Dec; 5(2):301-4. PubMed ID: 15984344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct response of immune gene expression in peripheral blood leucocytes modulated by bacterin vaccine candidates in rainbow trout Oncorhynchus mykiss: A potential in vitro screening and batch testing system for vaccine development in aquaculture.
    Attaya A; Jiang Y; Secombes CJ; Wang T
    Fish Shellfish Immunol; 2019 Oct; 93():631-640. PubMed ID: 31377431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlates of protective immunity for fish vaccines.
    Munang'andu HM; Evensen Ø
    Fish Shellfish Immunol; 2019 Feb; 85():132-140. PubMed ID: 29621636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probiotic Supplementation as an Emerging Alternative to Chemical Therapeutics in Finfish Aquaculture: a Review.
    Yousuf S; Tyagi A; Singh R
    Probiotics Antimicrob Proteins; 2023 Oct; 15(5):1151-1168. PubMed ID: 35904730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current Challenges of Vaccination in Fish Health Management.
    Kumar A; Middha SK; Menon SV; Paital B; Gokarn S; Nelli M; Rajanikanth RB; Chandra HM; Mugunthan SP; Kantwa SM; Usha T; Hati AK; Venkatesan D; Rajendran A; Behera TR; Venkatesamurthy S; Sahoo DK
    Animals (Basel); 2024 Sep; 14(18):. PubMed ID: 39335281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current status of fish vaccines in Japan.
    Matsuura Y; Terashima S; Takano T; Matsuyama T
    Fish Shellfish Immunol; 2019 Dec; 95():236-247. PubMed ID: 31586679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modern biotechnological strategies for vaccine development in aquaculture - Prospects and challenges.
    Jose Priya TA; Kappalli S
    Vaccine; 2022 Sep; 40(41):5873-5881. PubMed ID: 36088192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactic Acid Bacteria in Finfish-An Update.
    Ringø E; Hoseinifar SH; Ghosh K; Doan HV; Beck BR; Song SK
    Front Microbiol; 2018; 9():1818. PubMed ID: 30147679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial Pathogenesis in Various Fish Diseases: Recent Advances and Specific Challenges in Vaccine Development.
    Irshath AA; Rajan AP; Vimal S; Prabhakaran VS; Ganesan R
    Vaccines (Basel); 2023 Feb; 11(2):. PubMed ID: 36851346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State-of-the-Art Vaccine Research for Aquaculture Use: The Case of Three Economically Relevant Fish Species.
    Miccoli A; Manni M; Picchietti S; Scapigliati G
    Vaccines (Basel); 2021 Feb; 9(2):. PubMed ID: 33578766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.