BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33050701)

  • 1. Computational Model for Studying Breakage-Dependent Amyloid Growth.
    Joseph J; Maji SK; Padinhateeri R
    ACS Chem Neurosci; 2020 Nov; 11(21):3615-3622. PubMed ID: 33050701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recruitment of Light Chains by Homologous and Heterologous Fibrils Shows Distinctive Kinetic and Conformational Specificity.
    Blancas-Mejía LM; Ramirez-Alvarado M
    Biochemistry; 2016 May; 55(21):2967-78. PubMed ID: 27158939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the aggregation propensity of prion sequences.
    Espargaró A; Busquets MA; Estelrich J; Sabate R
    Virus Res; 2015 Sep; 207():127-35. PubMed ID: 25747492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A minimal conformational switching-dependent model for amyloid self-assembly.
    Ranganathan S; Ghosh D; Maji SK; Padinhateeri R
    Sci Rep; 2016 Feb; 6():21103. PubMed ID: 26883720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and polymorphs of yeast prion Sup35NM amyloidogenesis.
    Kinoshita M; Lin Y; Nakatsuji M; Inui T; Lee YH
    Int J Biol Macromol; 2017 Sep; 102():1241-1249. PubMed ID: 28476595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling Amyloid Aggregation Kinetics: A Case Study with Sup35NM.
    Sharma A; McDonald MA; Rose HB; Chernoff YO; Behrens SH; Bommarius AS
    J Phys Chem B; 2021 May; 125(19):4955-4963. PubMed ID: 33961433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Hybrid Model to Study Amyloid Cross-Toxicity.
    Henriquez G; Mendez L; Narayan M
    ACS Chem Neurosci; 2020 Feb; 11(3):228-230. PubMed ID: 31920071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects on light chain amyloid formation depend on mutations and type of glycosaminoglycans.
    Blancas-Mejía LM; Hammernik J; Marin-Argany M; Ramirez-Alvarado M
    J Biol Chem; 2015 Feb; 290(8):4953-4965. PubMed ID: 25538238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amyloid fibril proteins.
    Xing Y; Higuchi K
    Mech Ageing Dev; 2002 Nov; 123(12):1625-36. PubMed ID: 12470900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in Protein Concentration Dependence for Nucleation and Elongation in Light Chain Amyloid Formation.
    Blancas-Mejía LM; Misra P; Ramirez-Alvarado M
    Biochemistry; 2017 Feb; 56(5):757-766. PubMed ID: 28074646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensing and modulation of amyloid fibrils by photo-switchable organic dots.
    Uddin A; Roy B; Jose GP; Hossain SS; Hazra P
    Nanoscale; 2020 Aug; 12(32):16805-16818. PubMed ID: 32761038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soluble Assemblies in the Fibrillation Pathway of Prion-Inspired Artificial Functional Amyloids are Highly Cytotoxic.
    Díaz-Caballero M; Navarro S; Ventura S
    Biomacromolecules; 2020 Jun; 21(6):2334-2345. PubMed ID: 32227922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The growth of amyloid fibrils: rates and mechanisms.
    Buell AK
    Biochem J; 2019 Oct; 476(19):2677-2703. PubMed ID: 31654060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-steady-state kinetic analysis of the elongation of amyloid fibrils of beta(2)-microglobulin with tryptophan mutagenesis.
    Chatani E; Ohnishi R; Konuma T; Sakurai K; Naiki H; Goto Y
    J Mol Biol; 2010 Jul; 400(5):1057-66. PubMed ID: 20595042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Replication of Prion Protein Fragment 89-230 Amyloid Fibrils Accelerated by Prion Protein Fragment 107-143 Aggregates.
    Sneideris T; Ziaunys M; Chu BK; Chen RP; Smirnovas V
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33049945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The physical dimensions of amyloid aggregates control their infective potential as prion particles.
    Marchante R; Beal DM; Koloteva-Levine N; Purton TJ; Tuite MF; Xue WF
    Elife; 2017 Sep; 6():. PubMed ID: 28880146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining the pathway of worm-like amyloid fibril formation by the mouse prion protein by delineation of the productive and unproductive oligomerization reactions.
    Jain S; Udgaonkar JB
    Biochemistry; 2011 Feb; 50(7):1153-61. PubMed ID: 21214263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependence of the aggregation kinetics of Sup35 and Ure2p yeast prions.
    Sabaté R; Villar-Piqué A; Espargaró A; Ventura S
    Biomacromolecules; 2012 Feb; 13(2):474-83. PubMed ID: 22176525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salt-induced modulation of the pathway of amyloid fibril formation by the mouse prion protein.
    Jain S; Udgaonkar JB
    Biochemistry; 2010 Sep; 49(35):7615-24. PubMed ID: 20712298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.