BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33051458)

  • 1. Transcriptome sequencing of cochleae from constant-frequency and frequency-modulated echolocating bats.
    Ma L; Sun H; Mao X
    Sci Data; 2020 Oct; 7(1):341. PubMed ID: 33051458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative cochlear transcriptomics of echolocating bats provides new insights into different nervous activities of CF bat species.
    Wang H; Zhao H; Huang X; Sun K; Feng J
    Sci Rep; 2018 Oct; 8(1):15934. PubMed ID: 30374045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative inner ear transcriptome analysis between the Rickett's big-footed bats (Myotis ricketti) and the greater short-nosed fruit bats (Cynopterus sphinx).
    Dong D; Lei M; Liu Y; Zhang S
    BMC Genomics; 2013 Dec; 14():916. PubMed ID: 24365273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular adaptations underlying high-frequency hearing in the brain of CF bats species.
    Li X; Wang H; Wang X; Bao M; Sun R; Dai W; Sun K; Feng J
    BMC Genomics; 2024 Mar; 25(1):279. PubMed ID: 38493092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary Basis of High-Frequency Hearing in the Cochleae of Echolocators Revealed by Comparative Genomics.
    Wang H; Zhao H; Sun K; Huang X; Jin L; Feng J
    Genome Biol Evol; 2020 Jan; 12(1):3740-3753. PubMed ID: 31730196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Echolocation call frequency variation in horseshoe bats: molecular basis revealed by comparative transcriptomics.
    Sun H; Chen W; Wang J; Zhang L; Rossiter SJ; Mao X
    Proc Biol Sci; 2020 Sep; 287(1934):20200875. PubMed ID: 32900318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cochlear hair cells of echolocating bats are immune to intense noise.
    Liu Z; Chen P; Li YY; Li MW; Liu Q; Pan WL; Xu DM; Bai J; Zhang LB; Tang J; Shi P
    J Genet Genomics; 2021 Nov; 48(11):984-993. PubMed ID: 34393089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Untargeted metabolomics of the cochleae from two laryngeally echolocating bats.
    Wang H; Sun R; Xu N; Wang X; Bao M; Li X; Li J; Lin A; Feng J
    Front Mol Biosci; 2023; 10():1171366. PubMed ID: 37152899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full-Length Transcriptome of the Great Himalayan Leaf-Nosed Bats (
    Bao M; Wang X; Sun R; Wang Z; Li J; Jiang T; Lin A; Wang H; Feng J
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The evolution of bat vestibular systems in the face of potential antagonistic selection pressures for flight and echolocation.
    Davies KT; Bates PJ; Maryanto I; Cotton JA; Rossiter SJ
    PLoS One; 2013; 8(4):e61998. PubMed ID: 23637943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prenatal cranial bone development of Thomas's horseshoe bat (Rhinolophus thomasi): with special reference to petrosal morphology.
    Nojiri T; Werneburg I; Son NT; Tu VT; Sasaki T; Maekawa Y; Koyabu D
    J Morphol; 2018 Jun; 279(6):809-827. PubMed ID: 29537107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hearing gene Prestin reunites echolocating bats.
    Li G; Wang J; Rossiter SJ; Jones G; Cotton JA; Zhang S
    Proc Natl Acad Sci U S A; 2008 Sep; 105(37):13959-64. PubMed ID: 18776049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Echolocation signals of the greater horseshoe bat (Rhinolophus ferrumequinum) in transfer flight and during landing.
    Tian B; Schnitzler HU
    J Acoust Soc Am; 1997 Apr; 101(4):2347-64. PubMed ID: 9104033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood miRNomes and transcriptomes reveal novel longevity mechanisms in the long-lived bat, Myotis myotis.
    Huang Z; Jebb D; Teeling EC
    BMC Genomics; 2016 Nov; 17(1):906. PubMed ID: 27832764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Effects of a Retained Ancestral Polymorphism in Prestin.
    Li YY; Liu Z; Qi FY; Zhou X; Shi P
    Mol Biol Evol; 2017 Jan; 34(1):88-92. PubMed ID: 27744409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of echolocating bats' auditory stereocilia length, compared with other mammals.
    Yao Q; Zeng J; Zheng Y; Latham J; Liang B; Jiang L; Zhang S
    Sci China C Life Sci; 2007 Aug; 50(4):492-6. PubMed ID: 17653670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensorimotor Model of Obstacle Avoidance in Echolocating Bats.
    Vanderelst D; Holderied MW; Peremans H
    PLoS Comput Biol; 2015 Oct; 11(10):e1004484. PubMed ID: 26502063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel evolution of KCNQ4 in echolocating bats.
    Liu Z; Li S; Wang W; Xu D; Murphy RW; Shi P
    PLoS One; 2011; 6(10):e26618. PubMed ID: 22046315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prestin shows divergent evolution between constant frequency echolocating bats.
    Shen B; Avila-Flores R; Liu Y; Rossiter SJ; Zhang S
    J Mol Evol; 2011 Oct; 73(3-4):109-15. PubMed ID: 21947331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evoked potential study of the inferior collicular response to constant frequency-frequency modulation (CF-FM) sounds in FM and CF-FM bats.
    Fu Z; Xu N; Zhang G; Zhou D; Liu L; Tang J; Jen PH; Chen Q
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Apr; 205(2):239-252. PubMed ID: 30903279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.