These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

595 related articles for article (PubMed ID: 3305158)

  • 1. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains.
    Alani E; Cao L; Kleckner N
    Genetics; 1987 Aug; 116(4):541-5. PubMed ID: 3305158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an efficient genetic manipulation strategy for sequential gene disruption and expression of different heterologous GFP genes in Candida tropicalis.
    Zhang L; Chen X; Chen Z; Wang Z; Jiang S; Li L; Pötter M; Shen W; Fan Y
    Appl Microbiol Biotechnol; 2016 Nov; 100(22):9567-9580. PubMed ID: 27522195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable yeast transformation with chimeric plasmids using a 2 micron-circular DNA-less strain as a recipient.
    Blanc H; Gerbaud C; Slonimski PP; Guérineau M
    Mol Gen Genet; 1979 Nov; 176(3):335-42. PubMed ID: 392237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of hem3 mutants from Candida albicans by sequential gene disruption.
    Kurtz MB; Marrinan J
    Mol Gen Genet; 1989 May; 217(1):47-52. PubMed ID: 2671651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].
    Qu N; He XP; Guo XN; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. YHp as a highly stable, hyper-copy, hyper-expression plasmid constructed using a full 2-μm circle sequence in cir
    Misumi Y; Nishioka S; Fukuda A; Uemura T; Nakamura M; Hoshida H; Akada R
    Yeast; 2019 May; 36(5):249-257. PubMed ID: 30537227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic applications of yeast transformation with linear and gapped plasmids.
    Orr-Weaver TL; Szostak JW; Rothstein RJ
    Methods Enzymol; 1983; 101():228-45. PubMed ID: 6310326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step gene replacement in yeast by cotransformation.
    Rudolph H; Koenig-Rauseo I; Hinnen A
    Gene; 1985; 36(1-2):87-95. PubMed ID: 2998940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and disruption of the beta-isopropylmalate dehydrogenase gene (LEU2) of Pichia stipitis with URA3 and recovery of the double auxotroph.
    Lu P; Davis BP; Hendrick J; Jeffries TW
    Appl Microbiol Biotechnol; 1998 Feb; 49(2):141-6. PubMed ID: 9534253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel method for genomic promoter shuffling by using recyclable cassettes.
    Tian X; Xu X; Xiao W
    Appl Environ Microbiol; 2013 Nov; 79(22):7042-7. PubMed ID: 24014535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-frequency transformation of a methylotrophic yeast, Candida boidinii, with autonomously replicating plasmids which are also functional in Saccharomyces cerevisiae.
    Sakai Y; Goh TK; Tani Y
    J Bacteriol; 1993 Jun; 175(11):3556-62. PubMed ID: 8501059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Recombinant plasmids carrying multiple markers: isolation during yeast co-transformation].
    Kozhina TN; Chepurnaia OV; Fedorova IV
    Mol Gen Mikrobiol Virusol; 1985 May; (5):31-6. PubMed ID: 3916226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics.
    Boeke JD; Trueheart J; Natsoulis G; Fink GR
    Methods Enzymol; 1987; 154():164-75. PubMed ID: 3323810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmid construction by homologous recombination in yeast.
    Ma H; Kunes S; Schatz PJ; Botstein D
    Gene; 1987; 58(2-3):201-16. PubMed ID: 2828185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of plasmid vectors that facilitate subcloning and recovery of yeast and Escherichia coli DNA fragments.
    Naumovski L; Friedberg EC
    Gene; 1983; 22(2-3):203-9. PubMed ID: 6307821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High frequency of yeast transformation by plasmids carrying part or entire 2-micron yeast plasmid.
    Gerbaud C; Fournier P; Blanc H; Aigle M; Heslot H; Guerineau M
    Gene; 1979 Mar; 5(3):233-53. PubMed ID: 381104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homozygous gene disruption in diploid yeast through a single transformation.
    Kobashi Y; Nakayama E; Fukumori N; Shimojima A; Tabira M; Nishimura Y; Mukae M; Muto A; Nakashima N; Okutsu K; Yoshizaki Y; Futagami T; Takamine K; Tamaki H
    J Biosci Bioeng; 2024 Jan; 137(1):31-37. PubMed ID: 37981488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New vectors for construction of recombinant high-copy-number yeast acentric-ring plasmids.
    Fagan MC; Scott JF
    Gene; 1985; 40(2-3):217-29. PubMed ID: 3007289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites.
    Gietz RD; Sugino A
    Gene; 1988 Dec; 74(2):527-34. PubMed ID: 3073106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size of gene specific inverted repeat--dependent gene deletion In Saccharomyces cerevisiae.
    Lim C; Luhe AL; Jingying CT; Balagurunathan B; Wu J; Zhao H
    PLoS One; 2013; 8(8):e72137. PubMed ID: 23977230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.