These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33051583)

  • 1. Wettability and confinement size effects on stability of water conveying nanotubes.
    Shaat M; Javed U; Faroughi S
    Sci Rep; 2020 Oct; 10(1):17167. PubMed ID: 33051583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluidity and phase transitions of water in hydrophobic and hydrophilic nanotubes.
    Shaat M; Zheng Y
    Sci Rep; 2019 Apr; 9(1):5689. PubMed ID: 30952907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why does vacuum drive to the loading of halloysite nanotubes? The key role of water confinement.
    Lisuzzo L; Cavallaro G; Pasbakhsh P; Milioto S; Lazzara G
    J Colloid Interface Sci; 2019 Jul; 547():361-369. PubMed ID: 30974251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breakdown of the Stokes-Einstein water transport through narrow hydrophobic nanotubes.
    Köhler MH; Bordin JR; da Silva LB; Barbosa MC
    Phys Chem Chem Phys; 2017 May; 19(20):12921-12927. PubMed ID: 28480464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-vitro biocompatibility and corrosion resistance of strontium incorporated TiO2 nanotube arrays for orthopaedic applications.
    Indira K; Mudali UK; Rajendran N
    J Biomater Appl; 2014 Jul; 29(1):113-29. PubMed ID: 24346137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam.
    Khosravian N; Rafii-Tabar H
    Nanotechnology; 2008 Jul; 19(27):275703. PubMed ID: 21828715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superstable Ultrathin Water Film Confined in a Hydrophilized Carbon Nanotube.
    Tomo Y; Askounis A; Ikuta T; Takata Y; Sefiane K; Takahashi K
    Nano Lett; 2018 Mar; 18(3):1869-1874. PubMed ID: 29424547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-Controlled Water Flow in Nanotube Membranes.
    Casanova S; Borg MK; Chew YMJ; Mattia D
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1689-1698. PubMed ID: 30543406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uniqueness of Nanoscale Confinement for Fast Water Transport: Effect of Nanotube Diameter and Hydrophobicity.
    Sahu P; Ali SM
    J Phys Chem B; 2024 Jan; 128(1):222-243. PubMed ID: 38149848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscopic insights of saline water in carbon nanotube appended filters using molecular dynamics simulations.
    Sahu P; Musharaf Ali S; Shenoy KT; Mohan S
    Phys Chem Chem Phys; 2019 Apr; 21(16):8529-8542. PubMed ID: 30957831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscosity of Water Interfaces with Hydrophobic Nanopores: Application to Water Flow in Carbon Nanotubes.
    Shaat M
    Langmuir; 2017 Nov; 33(44):12814-12819. PubMed ID: 29035046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water transport and purification in nanochannels controlled by asymmetric wettability.
    Chen Q; Meng L; Li Q; Wang D; Guo W; Shuai Z; Jiang L
    Small; 2011 Aug; 7(15):2225-31. PubMed ID: 21608126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous carbon nanotube microspheres with tailorable surface wettability areas for oil adsorption.
    Ye X; Shao C; Fan Q; Shang L; Ye F
    J Colloid Interface Sci; 2021 Dec; 604():737-745. PubMed ID: 34293531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of fluid conduction through hydrophobic channel of carbon nanotubes: the exciting force for filling of nanotubes with polar and nonpolar fluids.
    Sahu P; Ali SM; Shenoy KT
    J Chem Phys; 2015 Feb; 142(7):074501. PubMed ID: 25702017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wettability and Applications of Nanochannels.
    Zhang X; Liu H; Jiang L
    Adv Mater; 2019 Feb; 31(5):e1804508. PubMed ID: 30345614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Heterogeneous Viscosity Flow Model for Liquid Transport through Nanopores Considering Pore Size and Wettability.
    Chang Y; Zhang Y; Niu Z; Chen X; Du M; Yang Z
    Molecules; 2024 Jul; 29(13):. PubMed ID: 38999127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale fluid-structure interaction: flow resistance and energy transfer between water and carbon nanotubes.
    Chen C; Ma M; Jin K; Liu JZ; Shen L; Zheng Q; Xu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046314. PubMed ID: 22181268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced wettability of long narrow carbon nanotubes in a double-walled hetero-structure: unraveling the effects of a boron nitride nanotube as the exterior.
    Foroutan M; Naeini VF; Ebrahimi M
    Phys Chem Chem Phys; 2019 Dec; 22(1):391-401. PubMed ID: 31821403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative effect of nanoconfinement on water transport across nanotube membranes.
    Zhao K; Wu H; Han B
    J Chem Phys; 2017 Oct; 147(16):164705. PubMed ID: 29096476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relation between flow enhancement factor and structure for core-softened fluids inside nanotubes.
    Bordin JR; Diehl A; Barbosa MC
    J Phys Chem B; 2013 Jun; 117(23):7047-56. PubMed ID: 23692639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.