These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33051583)

  • 21. Factors governing helix formation in peptides confined to carbon nanotubes.
    O'Brien EP; Stan G; Thirumalai D; Brooks BR
    Nano Lett; 2008 Nov; 8(11):3702-8. PubMed ID: 18817452
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Observation and Isochoric Thermodynamic Analysis of Partially Water-Filled 1.32 and 1.45 nm Diameter Carbon Nanotubes.
    Faucher S; Kuehne M; Oliaei H; Misra RP; Li SX; Aluru NR; Strano MS
    Nano Lett; 2023 Jan; 23(2):389-397. PubMed ID: 36602909
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Water transport through functionalized nanotubes with tunable hydrophobicity.
    Moskowitz I; Snyder MA; Mittal J
    J Chem Phys; 2014 Nov; 141(18):18C532. PubMed ID: 25399197
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water-Mediated Interactions Determine Helix Formation of Peptides in Open Nanotubes.
    Suvlu D; Thirumalai D; Rasaiah JC
    J Phys Chem B; 2021 Jan; 125(3):817-824. PubMed ID: 33464101
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties.
    Lewandowska Ż; Piszczek P; Radtke A; Jędrzejewski T; Kozak W; Sadowska B
    J Mater Sci Mater Med; 2015 Apr; 26(4):163. PubMed ID: 25791457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Freezing Temperatures, Ice Nanotubes Structures, and Proton Ordering of TIP4P/ICE Water inside Single Wall Carbon Nanotubes.
    Pugliese P; Conde MM; Rovere M; Gallo P
    J Phys Chem B; 2017 Nov; 121(45):10371-10381. PubMed ID: 29040802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.
    Chen L; Bonaccurso E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022401. PubMed ID: 25215736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes.
    Shao Q; Huang L; Zhou J; Lu L; Zhang L; Lu X; Jiang S; Gubbins KE; Shen W
    Phys Chem Chem Phys; 2008 Apr; 10(14):1896-906. PubMed ID: 18368182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Altering Emulsion Stability with Heterogeneous Surface Wettability.
    Meng Q; Zhang Y; Li J; Lammertink RG; Chen H; Tsai PA
    Sci Rep; 2016 Jun; 6():26953. PubMed ID: 27256703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diameter-sensitive biocompatibility of anodic TiO2 nanotubes treated with supercritical CO2 fluid.
    Lan MY; Liu CP; Huang HH; Chang JK; Lee SW
    Nanoscale Res Lett; 2013 Apr; 8(1):150. PubMed ID: 23547743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Confinement Effect of Sub-nanometer Difference on Melting Point of Ice-Nanotubes Measured by Photoluminescence Spectroscopy.
    Chiashi S; Saito Y; Kato T; Konabe S; Okada S; Yamamoto T; Homma Y
    ACS Nano; 2019 Feb; 13(2):1177-1182. PubMed ID: 30668902
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wettability conversion from superoleophobic to superhydrophilic on titania/single-walled carbon nanotube composite coatings.
    Zhang M; Zhang T; Cui T
    Langmuir; 2011 Aug; 27(15):9295-301. PubMed ID: 21732680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Silver nanoparticles supported on carbon nanotube carpets: influence of surface functionalization.
    Karumuri AK; Oswal DP; Hostetler HA; Mukhopadhyay SM
    Nanotechnology; 2016 Apr; 27(14):145603. PubMed ID: 26916727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement of wetting properties of individual boron nitride nanotubes with the wilhelmy method using a nanotube-based force sensor.
    Yum K; Yu MF
    Nano Lett; 2006 Feb; 6(2):329-33. PubMed ID: 16464059
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon nanotubes in benzene: internal and external solvation.
    Shim Y; Jung Y; Kim HJ
    Phys Chem Chem Phys; 2011 Mar; 13(9):3969-78. PubMed ID: 21225031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium.
    Nemati SH; Hadjizadeh A
    AAPS PharmSciTech; 2017 Aug; 18(6):2180-2187. PubMed ID: 28063103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anisotropic dielectric relaxation of the water confined in nanotubes for terahertz spectroscopy studied by molecular dynamics simulations.
    Qi W; Chen J; Yang J; Lei X; Song B; Fang H
    J Phys Chem B; 2013 Jul; 117(26):7967-71. PubMed ID: 23751101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anomalous capillary filling and wettability reversal in nanochannels.
    Gravelle S; Ybert C; Bocquet L; Joly L
    Phys Rev E; 2016 Mar; 93(3):033123. PubMed ID: 27078463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diffusion enhancement in core-softened fluid confined in nanotubes.
    Bordin JR; de Oliveira AB; Diehl A; Barbosa MC
    J Chem Phys; 2012 Aug; 137(8):084504. PubMed ID: 22938247
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling CO
    Liang Y; Tsuji S; Jia J; Tsuji T; Matsuoka T
    Acc Chem Res; 2017 Jul; 50(7):1530-1540. PubMed ID: 28661135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.