These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 33051594)

  • 1. Structural basis for nucleosome-mediated inhibition of cGAS activity.
    Cao D; Han X; Fan X; Xu RM; Zhang X
    Cell Res; 2020 Dec; 30(12):1088-1097. PubMed ID: 33051594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural mechanism of cGAS inhibition by the nucleosome.
    Pathare GR; Decout A; Glück S; Cavadini S; Makasheva K; Hovius R; Kempf G; Weiss J; Kozicka Z; Guey B; Melenec P; Fierz B; Thomä NH; Ablasser A
    Nature; 2020 Nov; 587(7835):668-672. PubMed ID: 32911482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for sequestration and autoinhibition of cGAS by chromatin.
    Michalski S; de Oliveira Mann CC; Stafford CA; Witte G; Bartho J; Lammens K; Hornung V; Hopfner KP
    Nature; 2020 Nov; 587(7835):678-682. PubMed ID: 32911480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular basis of tight nuclear tethering and inactivation of cGAS.
    Zhao B; Xu P; Rowlett CM; Jing T; Shinde O; Lei Y; West AP; Liu WR; Li P
    Nature; 2020 Nov; 587(7835):673-677. PubMed ID: 32911481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of nucleosome-dependent cGAS inhibition.
    Boyer JA; Spangler CJ; Strauss JD; Cesmat AP; Liu P; McGinty RK; Zhang Q
    Science; 2020 Oct; 370(6515):450-454. PubMed ID: 32913000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for the inhibition of cGAS by nucleosomes.
    Kujirai T; Zierhut C; Takizawa Y; Kim R; Negishi L; Uruma N; Hirai S; Funabiki H; Kurumizaka H
    Science; 2020 Oct; 370(6515):455-458. PubMed ID: 32912999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization.
    Li X; Shu C; Yi G; Chaton CT; Shelton CL; Diao J; Zuo X; Kao CC; Herr AB; Li P
    Immunity; 2013 Dec; 39(6):1019-31. PubMed ID: 24332030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The CRL5-SPSB3 ubiquitin ligase targets nuclear cGAS for degradation.
    Xu P; Liu Y; Liu C; Guey B; Li L; Melenec P; Ricci J; Ablasser A
    Nature; 2024 Mar; 627(8005):873-879. PubMed ID: 38418882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear cGAS: guard or prisoner?
    de Oliveira Mann CC; Hopfner KP
    EMBO J; 2021 Aug; 40(16):e108293. PubMed ID: 34250619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular uptake of extracellular nucleosomes induces innate immune responses by binding and activating cGMP-AMP synthase (cGAS).
    Wang H; Zang C; Ren M; Shang M; Wang Z; Peng X; Zhang Q; Wen X; Xi Z; Zhou C
    Sci Rep; 2020 Sep; 10(1):15385. PubMed ID: 32958884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The allosteric activation of cGAS underpins its dynamic signaling landscape.
    Hooy RM; Sohn J
    Elife; 2018 Oct; 7():. PubMed ID: 30295605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The catalytic mechanism of cyclic GMP-AMP synthase (cGAS) and implications for innate immunity and inhibition.
    Hall J; Ralph EC; Shanker S; Wang H; Byrnes LJ; Horst R; Wong J; Brault A; Dumlao D; Smith JF; Dakin LA; Schmitt DC; Trujillo J; Vincent F; Griffor M; Aulabaugh AE
    Protein Sci; 2017 Dec; 26(12):2367-2380. PubMed ID: 28940468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Communication between small cytosolic dsDNA and autophagy inhibits CGAS (cyclic GMP-AMP synthase) activation.
    Luo YW; Ji H; Huang AL; Tang KF
    Autophagy; 2024 May; 20(5):1186-1188. PubMed ID: 38013411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MRE11 liberates cGAS from nucleosome sequestration during tumorigenesis.
    Cho MG; Kumar RJ; Lin CC; Boyer JA; Shahir JA; Fagan-Solis K; Simpson DA; Fan C; Foster CE; Goddard AM; Lerner LM; Ellington SW; Wang Q; Wang Y; Ho AY; Liu P; Perou CM; Zhang Q; McGinty RK; Purvis JE; Gupta GP
    Nature; 2024 Jan; 625(7995):585-592. PubMed ID: 38200309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allosteric coupling between Mn2+ and dsDNA controls the catalytic efficiency and fidelity of cGAS.
    Hooy RM; Massaccesi G; Rousseau KE; Chattergoon MA; Sohn J
    Nucleic Acids Res; 2020 May; 48(8):4435-4447. PubMed ID: 32170294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The N terminus of cGAS de-oligomerizes the cGAS:DNA complex and lifts the DNA size restriction of core-cGAS activity.
    Lee A; Park EB; Lee J; Choi BS; Kang SJ
    FEBS Lett; 2017 Mar; 591(6):954-961. PubMed ID: 28214358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for retroviral integration into nucleosomes.
    Maskell DP; Renault L; Serrao E; Lesbats P; Matadeen R; Hare S; Lindemann D; Engelman AN; Costa A; Cherepanov P
    Nature; 2015 Jul; 523(7560):366-9. PubMed ID: 26061770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin modification by PSC occurs at one PSC per nucleosome and does not require the acidic patch of histone H2A.
    Lo SM; McElroy KA; Francis NJ
    PLoS One; 2012; 7(10):e47162. PubMed ID: 23071745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural mechanism of cytosolic DNA sensing by cGAS.
    Civril F; Deimling T; de Oliveira Mann CC; Ablasser A; Moldt M; Witte G; Hornung V; Hopfner KP
    Nature; 2013 Jun; 498(7454):332-7. PubMed ID: 23722159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleosomal dsDNA Stimulates APOL1 Expression in Human Cultured Podocytes by Activating the cGAS/IFI16-STING Signaling Pathway.
    Davis SE; Khatua AK; Popik W
    Sci Rep; 2019 Oct; 9(1):15485. PubMed ID: 31664093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.