BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 33051618)

  • 1. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world.
    Smith MN; Taylor TC; van Haren J; Rosolem R; Restrepo-Coupe N; Adams J; Wu J; de Oliveira RC; da Silva R; de Araujo AC; de Camargo PB; Huxman TE; Saleska SR
    Nat Plants; 2020 Oct; 6(10):1225-1230. PubMed ID: 33051618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosynthetic responses to vapour pressure deficit in temperate and tropical evergreen rainforest trees of Australia.
    Cunningham SC
    Oecologia; 2005 Feb; 142(4):521-8. PubMed ID: 15538633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species.
    Slot M; Winter K
    Plant Cell Environ; 2017 Dec; 40(12):3055-3068. PubMed ID: 28926102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Similar temperature dependence of photosynthetic parameters in sun and shade leaves of three tropical tree species.
    Hernández GG; Winter K; Slot M
    Tree Physiol; 2020 May; 40(5):637-651. PubMed ID: 32083285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Net photosynthesis and its affecting factors in a tropical seasonal rainforest ecosystem in southwest China].
    Song QH; Zhang YP; Tan ZH; Zhang LM; Yang Z; Zhao SJ; Sun XM
    Ying Yong Sheng Tai Xue Bao; 2010 Dec; 21(12):3007-14. PubMed ID: 21442983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosynthetic plasticity of a tropical tree species, Tabebuia rosea, in response to elevated temperature and [CO
    Slot M; Rifai SW; Winter K
    Plant Cell Environ; 2021 Jul; 44(7):2347-2364. PubMed ID: 33759203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming.
    Marchin RM; Broadhead AA; Bostic LE; Dunn RR; Hoffmann WA
    Plant Cell Environ; 2016 Oct; 39(10):2221-34. PubMed ID: 27392307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variable influence of photosynthetic thermal acclimation on future carbon uptake in Australian wooded ecosystems under climate change.
    Bennett AC; Knauer J; Bennett LT; Haverd V; Arndt SK
    Glob Chang Biol; 2024 Jan; 30(1):e17021. PubMed ID: 37962105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The capacity to emit isoprene differentiates the photosynthetic temperature responses of tropical plant species.
    Taylor TC; Smith MN; Slot M; Feeley KJ
    Plant Cell Environ; 2019 Aug; 42(8):2448-2457. PubMed ID: 30993708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of elevated temperature and vapour pressure deficit on leaf gas exchange and plant growth across six tropical rainforest tree species.
    Middleby KB; Cheesman AW; Cernusak LA
    New Phytol; 2024 Jul; 243(2):648-661. PubMed ID: 38757766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ temperature response of photosynthesis of 42 tree and liana species in the canopy of two Panamanian lowland tropical forests with contrasting rainfall regimes.
    Slot M; Winter K
    New Phytol; 2017 May; 214(3):1103-1117. PubMed ID: 28211583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales.
    Wu J; Guan K; Hayek M; Restrepo-Coupe N; Wiedemann KT; Xu X; Wehr R; Christoffersen BO; Miao G; da Silva R; de Araujo AC; Oliviera RC; Camargo PB; Monson RK; Huete AR; Saleska SR
    Glob Chang Biol; 2017 Mar; 23(3):1240-1257. PubMed ID: 27644012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tropical forest carbon balance in a warmer world: a critical review spanning microbial- to ecosystem-scale processes.
    Wood TE; Cavaleri MA; Reed SC
    Biol Rev Camb Philos Soc; 2012 Nov; 87(4):912-27. PubMed ID: 22607308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant hydraulics, stomatal control, and the response of a tropical forest to water stress over multiple temporal scales.
    Detto M; Pacala SW
    Glob Chang Biol; 2022 Jul; 28(14):4359-4376. PubMed ID: 35373899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration.
    Rowland L; Lobo-do-Vale RL; Christoffersen BO; Melém EA; Kruijt B; Vasconcelos SS; Domingues T; Binks OJ; Oliveira AA; Metcalfe D; da Costa AC; Mencuccini M; Meir P
    Glob Chang Biol; 2015 Dec; 21(12):4662-72. PubMed ID: 26179437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent CO
    Zuidema PA; Heinrich I; Rahman M; Vlam M; Zwartsenberg SA; van der Sleen P
    Glob Chang Biol; 2020 Jul; 26(7):4028-4041. PubMed ID: 32441438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photosynthetic acclimation to warming in tropical forest tree seedlings.
    Slot M; Winter K
    J Exp Bot; 2017 Apr; 68(9):2275-2284. PubMed ID: 28453647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic enhancement by elevated CO₂ depends on seasonal temperatures for warmed and non-warmed Eucalyptus globulus trees.
    Quentin AG; Crous KY; Barton CV; Ellsworth DS
    Tree Physiol; 2015 Nov; 35(11):1249-63. PubMed ID: 26496960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of simulated climate change conditions of increased temperature and [CO2] on the early growth and physiology of the tropical tree crop, Theobroma cacao L.
    Mateus-Rodríguez JF; Lahive F; Hadley P; Daymond AJ
    Tree Physiol; 2023 Dec; 43(12):2050-2063. PubMed ID: 37758447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of rising temperatures and [CO2] on the physiology of tropical forest trees.
    Lloyd J; Farquhar GD
    Philos Trans R Soc Lond B Biol Sci; 2008 May; 363(1498):1811-7. PubMed ID: 18267901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.