These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33051653)

  • 1. CYBERTRACK2.0: zero-inflated model-based cell clustering and population tracking method for longitudinal mass cytometry data.
    Minoura K; Abe K; Maeda Y; Nishikawa H; Shimamura T
    Bioinformatics; 2021 Jul; 37(11):1632-1634. PubMed ID: 33051653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phitest for analyzing the homogeneity of single-cell populations.
    Li WV
    Bioinformatics; 2022 Apr; 38(9):2639-2641. PubMed ID: 35238346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-based cell clustering and population tracking for time-series flow cytometry data.
    Minoura K; Abe K; Maeda Y; Nishikawa H; Shimamura T
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):633. PubMed ID: 31881827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data.
    Weber LM; Robinson MD
    Cytometry A; 2016 Dec; 89(12):1084-1096. PubMed ID: 27992111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-based clustering for flow and mass cytometry data with clinical information.
    Abe K; Minoura K; Maeda Y; Nishikawa H; Shimamura T
    BMC Bioinformatics; 2020 Sep; 21(Suppl 13):393. PubMed ID: 32938365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clusterdv: a simple density-based clustering method that is robust, general and automatic.
    Marques JC; Orger MB
    Bioinformatics; 2019 Jun; 35(12):2125-2132. PubMed ID: 30407500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable clustering algorithms for continuous environmental flow cytometry.
    Hyrkas J; Clayton S; Ribalet F; Halperin D; Armbrust EV; Howe B
    Bioinformatics; 2016 Feb; 32(3):417-23. PubMed ID: 26476780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GeoWaVe: geometric median clustering with weighted voting for ensemble clustering of cytometry data.
    Burton RJ; Cuff SM; Morgan MP; Artemiou A; Eberl M
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36413065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CytoBackBone: an algorithm for merging of phenotypic information from different cytometric profiles.
    Leite Pereira A; Lambotte O; Le Grand R; Cosma A; Tchitchek N
    Bioinformatics; 2019 Oct; 35(20):4187-4189. PubMed ID: 30903138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPADEVizR: an R package for visualization, analysis and integration of SPADE results.
    Gautreau G; Pejoski D; Le Grand R; Cosma A; Beignon AS; Tchitchek N
    Bioinformatics; 2017 Mar; 33(5):779-781. PubMed ID: 27993789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CyTOFmerge: integrating mass cytometry data across multiple panels.
    Abdelaal T; Höllt T; van Unen V; Lelieveldt BPF; Koning F; Reinders MJT; Mahfouz A
    Bioinformatics; 2019 Oct; 35(20):4063-4071. PubMed ID: 30874801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minirmd: accurate and fast duplicate removal tool for short reads via multiple minimizers.
    Liu Y; Zhang X; Zou Q; Zeng X
    Bioinformatics; 2021 Jul; 37(11):1604-1606. PubMed ID: 33112385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust clustering of noisy high-dimensional gene expression data for patients subtyping.
    Coretto P; Serra A; Tagliaferri R
    Bioinformatics; 2018 Dec; 34(23):4064-4072. PubMed ID: 29939219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast zero-inflated negative binomial mixed modeling approach for analyzing longitudinal metagenomics data.
    Zhang X; Yi N
    Bioinformatics; 2020 Apr; 36(8):2345-2351. PubMed ID: 31904815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clustering spatial transcriptomics data.
    Teng H; Yuan Y; Bar-Joseph Z
    Bioinformatics; 2022 Jan; 38(4):997-1004. PubMed ID: 34623423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration, exploration, and analysis of high-dimensional single-cell cytometry data using Spectre.
    Ashhurst TM; Marsh-Wakefield F; Putri GH; Spiteri AG; Shinko D; Read MN; Smith AL; King NJC
    Cytometry A; 2022 Mar; 101(3):237-253. PubMed ID: 33840138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral clustering based on learning similarity matrix.
    Park S; Zhao H
    Bioinformatics; 2018 Jun; 34(12):2069-2076. PubMed ID: 29432517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient multivariate analysis algorithms for longitudinal genome-wide association studies.
    Ning C; Wang D; Zhou L; Wei J; Liu Y; Kang H; Zhang S; Zhou X; Xu S; Liu JF
    Bioinformatics; 2019 Dec; 35(23):4879-4885. PubMed ID: 31070732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational approach for phenotypic comparisons of cell populations in high-dimensional cytometry data.
    Platon L; Pejoski D; Gautreau G; Targat B; Le Grand R; Beignon AS; Tchitchek N
    Methods; 2018 Jan; 132():66-75. PubMed ID: 28917725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ShinySOM: graphical SOM-based analysis of single-cell cytometry data.
    Kratochvíl M; Bednárek D; Sieger T; Fišer K; Vondrášek J
    Bioinformatics; 2020 May; 36(10):3288-3289. PubMed ID: 32049322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.