These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 33052012)
1. Dissolvable Gelatin-Based Microcarriers Generated through Droplet Microfluidics for Expansion and Culture of Mesenchymal Stromal Cells. Ng EX; Wang M; Neo SH; Tee CA; Chen CH; Van Vliet KJ Biotechnol J; 2021 Mar; 16(3):e2000048. PubMed ID: 33052012 [TBL] [Abstract][Full Text] [Related]
2. Scalable manufacture of therapeutic mesenchymal stromal cell products on customizable microcarriers in vertical wheel bioreactors that improve direct visualization, product harvest, and cost. Haskell A; White BP; Rogers RE; Goebel E; Lopez MG; Syvyk AE; de Oliveira DA; Barreda HA; Benton J; Benavides OR; Dalal S; Bae E; Zhang Y; Maitland K; Nikolov Z; Liu F; Lee RH; Kaunas R; Gregory CA Cytotherapy; 2024 Apr; 26(4):372-382. PubMed ID: 38363250 [TBL] [Abstract][Full Text] [Related]
3. Critical attributes of human early mesenchymal stromal cell-laden microcarrier constructs for improved chondrogenic differentiation. Lin YM; Lee J; Lim JFY; Choolani M; Chan JKY; Reuveny S; Oh SKW Stem Cell Res Ther; 2017 May; 8(1):93. PubMed ID: 28482913 [TBL] [Abstract][Full Text] [Related]
4. Dispersible and Dissolvable Porous Microcarrier Tablets Enable Efficient Large-Scale Human Mesenchymal Stem Cell Expansion. Yan X; Zhang K; Yang Y; Deng D; Lyu C; Xu H; Liu W; Du Y Tissue Eng Part C Methods; 2020 May; 26(5):263-275. PubMed ID: 32268824 [TBL] [Abstract][Full Text] [Related]
5. Enhanced in vitro osteogenic differentiation of human fetal MSCs attached to 3D microcarriers versus harvested from 2D monolayers. Shekaran A; Sim E; Tan KY; Chan JK; Choolani M; Reuveny S; Oh S BMC Biotechnol; 2015 Oct; 15():102. PubMed ID: 26520400 [TBL] [Abstract][Full Text] [Related]
6. Controllable manipulation of alginate-gelatin core-shell microcarriers for HUMSCs expansion. Wu Y; Zheng Y; Jin Z; Li S; Wu W; An C; Guo J; Zhu Z; Zhou T; Zhou Y; Cen L Int J Biol Macromol; 2022 Sep; 216():1-13. PubMed ID: 35777503 [TBL] [Abstract][Full Text] [Related]
7. Expansion in microcarrier-spinner cultures improves the chondrogenic potential of human early mesenchymal stromal cells. Lin YM; Lim JF; Lee J; Choolani M; Chan JK; Reuveny S; Oh SK Cytotherapy; 2016 Jun; 18(6):740-53. PubMed ID: 27173750 [TBL] [Abstract][Full Text] [Related]
8. Systematic microcarrier screening and agitated culture conditions improves human mesenchymal stem cell yield in bioreactors. Rafiq QA; Coopman K; Nienow AW; Hewitt CJ Biotechnol J; 2016 Mar; 11(4):473-86. PubMed ID: 26632496 [TBL] [Abstract][Full Text] [Related]
9. Study on the Umbilical Cord-Mesenchymal Stem Cell Manufacturing Using Clinical-Grade Culture Medium. Kurogi H; Takijiri T; Sakumoto M; Isogai M; Takahashi A; Okubo T; Koike T; Yamada T; Nagamura-Inoue T; Sakaki-Yumoto M Tissue Eng Part C Methods; 2022 Jan; 28(1):23-33. PubMed ID: 35018815 [TBL] [Abstract][Full Text] [Related]
10. Comparison of polystyrene and hydrogel microcarriers for optical imaging of adherent cells. Benavides OR; White BP; Gibbs HC; Kaunas R; Gregory CA; Maitland KC; Walsh AJ J Biomed Opt; 2024 Jun; 29(Suppl 2):S22708. PubMed ID: 38872791 [TBL] [Abstract][Full Text] [Related]
11. Biofunctionalization of Cellulose Microcarriers Using a Carbohydrate Binding Module Linked with Fibroblast Growth Factor for the Expansion of Human Umbilical Mesenchymal Stromal Cells in Stirred Suspension Bioreactors. Abraham BD; Gysel E; Kallos MS; Hu J ACS Appl Bio Mater; 2024 Sep; 7(9):5956-5964. PubMed ID: 39190068 [TBL] [Abstract][Full Text] [Related]
12. Challenges and opportunities in downstream separation processes for mesenchymal stromal cells cultured in microcarrier-based stirred suspension bioreactors. Mawji I; Roberts EL; Dang T; Abraham B; Kallos MS Biotechnol Bioeng; 2022 Nov; 119(11):3062-3078. PubMed ID: 35962467 [TBL] [Abstract][Full Text] [Related]
13. 3D Culture of MSCs on a Gelatin Microsphere in a Dynamic Culture System Enhances Chondrogenesis. Sulaiman S; Chowdhury SR; Fauzi MB; Rani RA; Yahaya NHM; Tabata Y; Hiraoka Y; Binti Haji Idrus R; Min Hwei N Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32294921 [TBL] [Abstract][Full Text] [Related]
14. Microcarriers with Synthetic Hydrogel Surfaces for Stem Cell Expansion. Dias AD; Elicson JM; Murphy WL Adv Healthc Mater; 2017 Aug; 6(16):. PubMed ID: 28509413 [TBL] [Abstract][Full Text] [Related]
16. Sub-confluent culture of human mesenchymal stromal cells on biodegradable polycaprolactone microcarriers enhances bone healing of rat calvarial defect. Lam AT; Sim EJ; Shekaran A; Li J; Teo KL; Goggi JL; Reuveny S; Birch WR; Oh SK Cytotherapy; 2019 Jun; 21(6):631-642. PubMed ID: 30975604 [TBL] [Abstract][Full Text] [Related]
17. Efficient expansion and delayed senescence of hUC-MSCs by microcarrier-bioreactor system. Wang X; Ouyang L; Chen W; Cao Y; Zhang L Stem Cell Res Ther; 2023 Oct; 14(1):284. PubMed ID: 37794520 [TBL] [Abstract][Full Text] [Related]
18. Modulation of mesenchymal stem cell actin organization on conventional microcarriers for proliferation and differentiation in stirred bioreactors. Sart S; Errachid A; Schneider YJ; Agathos SN J Tissue Eng Regen Med; 2013 Jul; 7(7):537-51. PubMed ID: 22383400 [TBL] [Abstract][Full Text] [Related]
19. Biodegradable poly-ε-caprolactone microcarriers for efficient production of human mesenchymal stromal cells and secreted cytokines in batch and fed-batch bioreactors. Lam AT; Li J; Toh JP; Sim EJ; Chen AK; Chan JK; Choolani M; Reuveny S; Birch WR; Oh SK Cytotherapy; 2017 Mar; 19(3):419-432. PubMed ID: 28017598 [TBL] [Abstract][Full Text] [Related]