These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33052165)

  • 1. The EV revolution: The road ahead for critical raw materials demand.
    Jones B; Elliott RJR; Nguyen-Tien V
    Appl Energy; 2020 Dec; 280():115072. PubMed ID: 33052165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. China's electric vehicle and climate ambitions jeopardized by surging critical material prices.
    Wang H; Feng K; Wang P; Yang Y; Sun L; Yang F; Chen WQ; Zhang Y; Li J
    Nat Commun; 2023 Mar; 14(1):1246. PubMed ID: 36870994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Materials Challenges in the Electric Vehicle Transition.
    He D; Keith DR; Kim HC; De Kleine R; Anderson J; Doolan M
    Environ Sci Technol; 2024 Jul; 58(28):12297-12303. PubMed ID: 38968232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Driving Sustainability: Carbon Footprint, 3D Printing, and Legislation concerning Electric and Autonomous Vehicles.
    Jovanović M; Mateo Sanguino TJ; Damjanović M; Đukanović M; Thomopoulos N
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Economic and Climate Benefits of Electric Vehicles in China, the United States, and Germany.
    He X; Zhang S; Wu Y; Wallington TJ; Lu X; Tamor MA; McElroy MB; Zhang KM; Nielsen CP; Hao J
    Environ Sci Technol; 2019 Sep; 53(18):11013-11022. PubMed ID: 31415163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. System dynamics-based assessment of novel transport options adoption in India.
    Saraf N; Shastri Y
    Clean Technol Environ Policy; 2023; 25(3):799-823. PubMed ID: 36186674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breaking Free from Cobalt Reliance in Lithium-Ion Batteries.
    Gourley SWD; Or T; Chen Z
    iScience; 2020 Sep; 23(9):101505. PubMed ID: 32947125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental implication of electric vehicles in China.
    Huo H; Zhang Q; Wang MQ; Streets DG; He K
    Environ Sci Technol; 2010 Jul; 44(13):4856-61. PubMed ID: 20496930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global mining risk footprint of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum in Japan.
    Nansai K; Nakajima K; Kagawa S; Kondo Y; Shigetomi Y; Suh S
    Environ Sci Technol; 2015 Feb; 49(4):2022-31. PubMed ID: 25622132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Material flow analysis and regional greenhouse gas emissions associated to permanent magnets and batteries used in electric vehicles.
    Martínez-Hernando MP; Bolonio D; Ortega MF; Llamas JF; García-Martínez MJ
    Sci Total Environ; 2023 Dec; 904():166368. PubMed ID: 37619721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perspectives on Cobalt Supply through 2030 in the Face of Changing Demand.
    Fu X; Beatty DN; Gaustad GG; Ceder G; Roth R; Kirchain RE; Bustamante M; Babbitt C; Olivetti EA
    Environ Sci Technol; 2020 Mar; 54(5):2985-2993. PubMed ID: 32072813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of battery utilization and energy consumption in the large-scale development of urban electric vehicles.
    Zhao Y; Wang Z; Shen ZM; Sun F
    Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33875590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradable transportation network with the addition of electric vehicles: Network equilibrium analysis.
    Zhang R; Yao E; Yang Y
    PLoS One; 2017; 12(9):e0184693. PubMed ID: 28886167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trade-off between critical metal requirement and transportation decarbonization in automotive electrification.
    Zhang C; Zhao X; Sacchi R; You F
    Nat Commun; 2023 Apr; 14(1):1616. PubMed ID: 37041146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of electric vechicles on power transmission grids.
    Gómez-Ramírez GA; Solis-Ortega R; Ross-Lépiz LA
    Heliyon; 2023 Nov; 9(11):e22253. PubMed ID: 38053891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing Short-Term Supply Disruption Impacts within Life Cycle Sustainability Assessment─A Case Study of Electric Vehicles.
    Berr M; Hischier R; Wäger P
    Environ Sci Technol; 2023 Dec; 57(48):19678-19689. PubMed ID: 37956219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards sustainable business models for electric vehicle battery second use: A critical review.
    Reinhardt R; Christodoulou I; Gassó-Domingo S; Amante García B
    J Environ Manage; 2019 Sep; 245():432-446. PubMed ID: 31170632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Electric Vehicle (EV) Buyers in India: A Machine Learning Approach.
    Dixit SK; Singh AK
    Rev Socionetwork Strateg; 2022; 16(2):221-238. PubMed ID: 35600566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An assessment of electric vehicles: technology, infrastructure requirements, greenhouse-gas emissions, petroleum use, material use, lifetime cost, consumer acceptance and policy initiatives.
    Delucchi MA; Yang C; Burke AF; Ogden JM; Kurani K; Kessler J; Sperling D
    Philos Trans A Math Phys Eng Sci; 2014 Jan; 372(2006):20120325. PubMed ID: 24298079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Institutional obstacles to expansion of world food production.
    Crosson PR
    Science; 1975 May; 188(4188):519-24. PubMed ID: 17740002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.