These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 33052463)
1. Evaluation of a convolutional neural network for ovarian tumor differentiation based on magnetic resonance imaging. Wang R; Cai Y; Lee IK; Hu R; Purkayastha S; Pan I; Yi T; Tran TML; Lu S; Liu T; Chang K; Huang RY; Zhang PJ; Zhang Z; Xiao E; Wu J; Bai HX Eur Radiol; 2021 Jul; 31(7):4960-4971. PubMed ID: 33052463 [TBL] [Abstract][Full Text] [Related]
2. Deep Learning to Distinguish Benign from Malignant Renal Lesions Based on Routine MR Imaging. Xi IL; Zhao Y; Wang R; Chang M; Purkayastha S; Chang K; Huang RY; Silva AC; Vallières M; Habibollahi P; Fan Y; Zou B; Gade TP; Zhang PJ; Soulen MC; Zhang Z; Bai HX; Stavropoulos SW Clin Cancer Res; 2020 Apr; 26(8):1944-1952. PubMed ID: 31937619 [TBL] [Abstract][Full Text] [Related]
3. Machine learning combined with radiomics and deep learning features extracted from CT images: a novel AI model to distinguish benign from malignant ovarian tumors. Jan YT; Tsai PS; Huang WH; Chou LY; Huang SC; Wang JZ; Lu PH; Lin DC; Yen CS; Teng JP; Mok GSP; Shih CT; Wu TH Insights Imaging; 2023 Apr; 14(1):68. PubMed ID: 37093321 [TBL] [Abstract][Full Text] [Related]
4. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI. Hamm CA; Wang CJ; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Duncan JS; Weinreb JC; Chapiro J; Letzen B Eur Radiol; 2019 Jul; 29(7):3338-3347. PubMed ID: 31016442 [TBL] [Abstract][Full Text] [Related]
5. Development and validation of a deep learning model for breast lesion segmentation and characterization in multiparametric MRI. Zhu J; Geng J; Shan W; Zhang B; Shen H; Dong X; Liu M; Li X; Cheng L Front Oncol; 2022; 12():946580. PubMed ID: 36033449 [TBL] [Abstract][Full Text] [Related]
6. A deep learning model integrating mammography and clinical factors facilitates the malignancy prediction of BI-RADS 4 microcalcifications in breast cancer screening. Liu H; Chen Y; Zhang Y; Wang L; Luo R; Wu H; Wu C; Zhang H; Tan W; Yin H; Wang D Eur Radiol; 2021 Aug; 31(8):5902-5912. PubMed ID: 33496829 [TBL] [Abstract][Full Text] [Related]
7. Attention feature fusion methodology with additional constraint for ovarian lesion diagnosis on magnetic resonance images. Wang S; Xu X; Du H; Chen Y; Mei W Med Phys; 2023 Jan; 50(1):297-310. PubMed ID: 35975618 [TBL] [Abstract][Full Text] [Related]
8. Combined diagnosis of multiparametric MRI-based deep learning models facilitates differentiating triple-negative breast cancer from fibroadenoma magnetic resonance BI-RADS 4 lesions. Yin HL; Jiang Y; Xu Z; Jia HH; Lin GW J Cancer Res Clin Oncol; 2023 Jun; 149(6):2575-2584. PubMed ID: 35771263 [TBL] [Abstract][Full Text] [Related]
9. Deep Learning-Based Detection and Classification of Bone Lesions on Staging Computed Tomography in Prostate Cancer: A Development Study. Belue MJ; Harmon SA; Yang D; An JY; Gaur S; Law YM; Turkbey E; Xu Z; Tetreault J; Lay NS; Yilmaz EC; Phelps TE; Simon B; Lindenberg L; Mena E; Pinto PA; Bagci U; Wood BJ; Citrin DE; Dahut WL; Madan RA; Gulley JL; Xu D; Choyke PL; Turkbey B Acad Radiol; 2024 Jun; 31(6):2424-2433. PubMed ID: 38262813 [TBL] [Abstract][Full Text] [Related]
10. Deep Learning for Classification of Bone Lesions on Routine MRI. Eweje FR; Bao B; Wu J; Dalal D; Liao WH; He Y; Luo Y; Lu S; Zhang P; Peng X; Sebro R; Bai HX; States L EBioMedicine; 2021 Jun; 68():103402. PubMed ID: 34098339 [TBL] [Abstract][Full Text] [Related]
11. Using Deep Learning with Convolutional Neural Network Approach to Identify the Invasion Depth of Endometrial Cancer in Myometrium Using MR Images: A Pilot Study. Dong HC; Dong HK; Yu MH; Lin YH; Chang CC Int J Environ Res Public Health; 2020 Aug; 17(16):. PubMed ID: 32824765 [TBL] [Abstract][Full Text] [Related]
12. Benign vs malignant vertebral compression fractures with MRI: a comparison between automatic deep learning network and radiologist's assessment. Liu B; Jin Y; Feng S; Yu H; Zhang Y; Li Y Eur Radiol; 2023 Jul; 33(7):5060-5068. PubMed ID: 37162531 [TBL] [Abstract][Full Text] [Related]
13. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176 [TBL] [Abstract][Full Text] [Related]
14. Deep learning-enabled pelvic ultrasound images for accurate diagnosis of ovarian cancer in China: a retrospective, multicentre, diagnostic study. Gao Y; Zeng S; Xu X; Li H; Yao S; Song K; Li X; Chen L; Tang J; Xing H; Yu Z; Zhang Q; Zeng S; Yi C; Xie H; Xiong X; Cai G; Wang Z; Wu Y; Chi J; Jiao X; Qin Y; Mao X; Chen Y; Jin X; Mo Q; Chen P; Huang Y; Shi Y; Wang J; Zhou Y; Ding S; Zhu S; Liu X; Dong X; Cheng L; Zhu L; Cheng H; Cha L; Hao Y; Jin C; Zhang L; Zhou P; Sun M; Xu Q; Chen K; Gao Z; Zhang X; Ma Y; Liu Y; Xiao L; Xu L; Peng L; Hao Z; Yang M; Wang Y; Ou H; Jia Y; Tian L; Zhang W; Jin P; Tian X; Huang L; Wang Z; Liu J; Fang T; Yan D; Cao H; Ma J; Li X; Zheng X; Lou H; Song C; Li R; Wang S; Li W; Zheng X; Chen J; Li G; Chen R; Xu C; Yu R; Wang J; Xu S; Kong B; Xie X; Ma D; Gao Q Lancet Digit Health; 2022 Mar; 4(3):e179-e187. PubMed ID: 35216752 [TBL] [Abstract][Full Text] [Related]
15. Deep learning-based differentiation of peripheral high-flow and low-flow vascular malformations in T2-weighted short tau inversion recovery MRI. Hammer S; Nunes DW; Hammer M; Zeman F; Akers M; Götz A; Balla A; Doppler MC; Fellner C; Platz Batista da Silva N; Thurn S; Verloh N; Stroszczynski C; Wohlgemuth WA; Palm C; Uller W Clin Hemorheol Microcirc; 2024; 87(2):221-235. PubMed ID: 38306026 [TBL] [Abstract][Full Text] [Related]
16. Validation of a Deep Learning Algorithm for the Detection of Malignant Pulmonary Nodules in Chest Radiographs. Yoo H; Kim KH; Singh R; Digumarthy SR; Kalra MK JAMA Netw Open; 2020 Sep; 3(9):e2017135. PubMed ID: 32970157 [TBL] [Abstract][Full Text] [Related]
17. Comparison of diagnostic performance of a deep learning algorithm, emergency physicians, junior radiologists and senior radiologists in the detection of appendicular fractures in children. Gasmi I; Calinghen A; Parienti JJ; Belloy F; Fohlen A; Pelage JP Pediatr Radiol; 2023 Jul; 53(8):1675-1684. PubMed ID: 36877239 [TBL] [Abstract][Full Text] [Related]
18. An artificial intelligence system using maximum intensity projection MR images facilitates classification of non-mass enhancement breast lesions. Wang L; Chang L; Luo R; Cui X; Liu H; Wu H; Chen Y; Zhang Y; Wu C; Li F; Liu H; Guan W; Wang D Eur Radiol; 2022 Jul; 32(7):4857-4867. PubMed ID: 35258676 [TBL] [Abstract][Full Text] [Related]
19. Convolutional Neural Network-Based Computer-Assisted Diagnosis of Hashimoto's Thyroiditis on Ultrasound. Zhao W; Kang Q; Qian F; Li K; Zhu J; Ma B J Clin Endocrinol Metab; 2022 Mar; 107(4):953-963. PubMed ID: 34907442 [TBL] [Abstract][Full Text] [Related]
20. Improving B-mode ultrasound diagnostic performance for focal liver lesions using deep learning: A multicentre study. Yang Q; Wei J; Hao X; Kong D; Yu X; Jiang T; Xi J; Cai W; Luo Y; Jing X; Yang Y; Cheng Z; Wu J; Zhang H; Liao J; Zhou P; Song Y; Zhang Y; Han Z; Cheng W; Tang L; Liu F; Dou J; Zheng R; Yu J; Tian J; Liang P EBioMedicine; 2020 Jun; 56():102777. PubMed ID: 32485640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]