BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 33052487)

  • 1. Shrinking of repeating unit length in leucine-rich repeats from double-stranded DNA viruses.
    Matsushima N; Miyashita H; Tamaki S; Kretsinger RH
    Arch Virol; 2021 Jan; 166(1):43-64. PubMed ID: 33052487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerous variants of leucine rich repeats in proteins from nucleo-cytoplasmic large DNA viruses.
    Matsushima N; Kretsinger RH
    Gene; 2022 Apr; 817():146156. PubMed ID: 35032616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nested leucine rich repeat (LRR) domain: the precursor of LRRs is a ten or eleven residue motif.
    Matsushima N; Miyashita H; Mikami T; Kuroki Y
    BMC Microbiol; 2010 Sep; 10():235. PubMed ID: 20825685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A strong correlation between consensus sequences and unique super secondary structures in leucine rich repeats.
    Batkhishig D; Enkhbayar P; Kretsinger RH; Matsushima N
    Proteins; 2020 Jul; 88(7):840-852. PubMed ID: 31998983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel leucine rich repeat domains in proteins from unicellular eukaryotes and bacteria.
    Miyashita H; Kuroki Y; Matsushima N
    Protein Pept Lett; 2014 Mar; 21(3):292-305. PubMed ID: 24164306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LRRfinder2.0: a webserver for the prediction of leucine-rich repeats.
    Offord V; Werling D
    Innate Immun; 2013; 19(4):398-402. PubMed ID: 23178228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural principles of leucine-rich repeat (LRR) proteins.
    Enkhbayar P; Kamiya M; Osaki M; Matsumoto T; Matsushima N
    Proteins; 2004 Feb; 54(3):394-403. PubMed ID: 14747988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors.
    Matsushima N; Tanaka T; Enkhbayar P; Mikami T; Taga M; Yamada K; Kuroki Y
    BMC Genomics; 2007 May; 8():124. PubMed ID: 17517123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super Secondary Structure Consisting of a Polyproline II Helix and a β-Turn in Leucine Rich Repeats in Bacterial Type III Secretion System Effectors.
    Batkhishig D; Bilguun K; Enkhbayar P; Miyashita H; Kretsinger RH; Matsushima N
    Protein J; 2018 Jun; 37(3):223-236. PubMed ID: 29651716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super-motifs and evolution of tandem leucine-rich repeats within the small proteoglycans--biglycan, decorin, lumican, fibromodulin, PRELP, keratocan, osteoadherin, epiphycan, and osteoglycin.
    Matsushima N; Ohyanagi T; Tanaka T; Kretsinger RH
    Proteins; 2000 Feb; 38(2):210-25. PubMed ID: 10656267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Dual Leucine-rich Repeat in Proteins from the Eukaryotic SAR Group.
    Matsushima N; Batkhishig D; Enkhbayar P; Kretsinger RH
    Protein Pept Lett; 2023; 30(7):574-586. PubMed ID: 37211850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana.
    Mondragón-Palomino M; Meyers BC; Michelmore RW; Gaut BS
    Genome Res; 2002 Sep; 12(9):1305-15. PubMed ID: 12213767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyses of non-leucine-rich repeat (non-LRR) regions intervening between LRRs in proteins.
    Matsushima N; Mikami T; Tanaka T; Miyashita H; Yamada K; Kuroki Y
    Biochim Biophys Acta; 2009 Oct; 1790(10):1217-37. PubMed ID: 19580846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing.
    Iranzo J; Krupovic M; Koonin EV
    mBio; 2016 Aug; 7(4):. PubMed ID: 27486193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design of cationic antimicrobial peptides by the tandem of leucine-rich repeat.
    Ma QQ; Lv YF; Gu Y; Dong N; Li DS; Shan AS
    Amino Acids; 2013 Apr; 44(4):1215-24. PubMed ID: 23430306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyses of six homologous proteins of Protochlamydia amoebophila UWE25 encoded by large GC-rich genes (lgr): a model of evolution and concatenation of leucine-rich repeats.
    Eugster M; Roten CA; Greub G
    BMC Evol Biol; 2007 Nov; 7():231. PubMed ID: 18021397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing repeat proteins: modular leucine-rich repeat protein libraries based on the mammalian ribonuclease inhibitor family.
    Stumpp MT; Forrer P; Binz HK; Plückthun A
    J Mol Biol; 2003 Sep; 332(2):471-87. PubMed ID: 12948496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Report of leucine-rich repeats (LRRs) from Scylla serrata: Ontogeny, molecular cloning, characterization and expression analysis following ligand stimulation, and upon bacterial and viral infections.
    Vidya R; Makesh M; Purushothaman CS; Chaudhari A; Gireesh-Babu P; Rajendran KV
    Gene; 2016 Sep; 590(1):159-68. PubMed ID: 27328453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analysis of leucine-rich-repeat variants in proteins associated with human diseases.
    Matsushima N; Tachi N; Kuroki Y; Enkhbayar P; Osaki M; Kamiya M; Kretsinger RH
    Cell Mol Life Sci; 2005 Dec; 62(23):2771-91. PubMed ID: 16231091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Untangling the origin of viruses and their impact on cellular evolution.
    Nasir A; Sun FJ; Kim KM; Caetano-Anollés G
    Ann N Y Acad Sci; 2015 Apr; 1341():61-74. PubMed ID: 25758413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.